Suppr超能文献

通过在表面自发形成富含镱和氧空位的层来稳定富锂层状氧化物阴极。

Stabilized Li-Rich Layered Oxide Cathode by a Spontaneously Formed Yb and Oxygen-Vacancy Rich Layer on the Surface.

作者信息

Li Quan, Wang Hong, Wang Guan, Xia Fanjie, Zeng Weihao, Peng Haoyang, Ma Ganggang, Guo Anan, Dong Ruifeng, Wu Jinsong

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.

Nanostructure Research Center (NRC), Wuhan University of Technology, Wuhan, 430070, China.

出版信息

Small. 2024 Feb;20(8):e2307419. doi: 10.1002/smll.202307419. Epub 2023 Oct 11.

Abstract

Li-rich layered oxides (LLOs) are among the most promising cathode materials with high theoretical specific capacity (>250 mAh g ). However, capacity decay and voltage hysteresis due tostructural degradation during cycling impede the commercial application of LLOs. Surface engineering and element doping are two methods widely applied tomitigate the structural degradation. Here, it is found that trace amount lanthanide element Yb doping can spontaneously form a surficial Yb-rich layer with high density of oxygen vacancy on the LLO-0.3% Yb (Li Mn Co Yb Ni O where x = 0.003) cathodes, which mitigating lattice oxygen loss and the non-preferred layered-to-spinel-to-rock salt tri-phase transition. Meanwhile, there are also some Yb ions doped into the lattice of LLO, which enhance the binding energy with oxygen and stabilize the lattice in grain interior during cycling. The dual effects of Yb doping greatly mitigate the structure degradation during cycling, and facilitate fast diffusion of lithium ions. As a result, the LLO-0.3% Yb sample achieves significantly improved cycling stability, with a capacity retention of 84.69% after 100 cycles at 0.2 C and 84.3% after 200 cycles at 1 C. These finding shighlight the promising rare element doping strategy that can have both surface engineering and doping effects in preparing LLO cathodes with high stability.

摘要

富锂层状氧化物(LLOs)是最具潜力的正极材料之一,具有较高的理论比容量(>250 mAh g)。然而,循环过程中由于结构退化导致的容量衰减和电压滞后阻碍了LLOs的商业应用。表面工程和元素掺杂是广泛应用于减轻结构退化的两种方法。在此,发现痕量镧系元素Yb掺杂可在LLO-0.3%Yb(Li Mn Co Yb Ni O,其中x = 0.003)正极上自发形成具有高密度氧空位的富Yb表面层,这减轻了晶格氧损失以及非理想的层状-尖晶石-岩盐三相转变。同时,也有一些Yb离子掺杂到LLO晶格中,增强了与氧的结合能,并在循环过程中稳定了晶粒内部的晶格。Yb掺杂的双重作用极大地减轻了循环过程中的结构退化,并促进了锂离子的快速扩散。结果,LLO-0.3%Yb样品实现了显著提高的循环稳定性,在0.2 C下100次循环后容量保持率为84.69%,在1 C下200次循环后容量保持率为84.3%。这些发现突出了一种有前景的稀土元素掺杂策略,即在制备具有高稳定性的LLO正极时可同时具有表面工程和掺杂效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验