CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China.
University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
Acc Chem Res. 2021 Sep 7;54(17):3438-3451. doi: 10.1021/acs.accounts.1c00340. Epub 2021 Aug 12.
Natural products are constructed by organisms in impressive ways through various highly selective enzyme-catalyzed chemical reactions. Over the past century, there has been considerable interest in understanding and emulating the underlying biosynthetic logic for the target molecule. The successful implementation of a biomimetic strategy usually has some uniquely valuable benefits over other abiotic routes in total synthesis by (1) corroborating the chemical feasibility of a given biogenetic hypothesis and further unraveling some insightful implications for future biosynthetic studies and (2) providing remarkably more concise access to not only the original synthetic target but also diversified biogenetically related congeners, which may result in either the structural reassignment of previously disclosed natural products or the anticipation of undiscovered natural products. However, for the devised essential biomimetic transformation, fine-tuning the optimization of the substrates and the reaction conditions can sometimes be painstakingly challenging. Turning to nature for inspiration can provide additional impetus for methodological innovations.Previously used as oral veterinary drugs, lankacidins have potential as next-generation antibiotics to tackle the problems caused by multidrug-resistant bacteria with novel modes of action (MoAs). The hypersensitive and densely functionalized lactonic core within this family of macrocyclic polyketides poses a formidable challenge for chemical total synthesis and derivatization. In this account, we summarized the evolution of a unified biomimetic approach toward 10 lankacidin antibiotics and their linear biosynthetic intermediates in the longest linear 7-12 steps from readily available starting materials. Our endeavor commenced with an intermolecular bioinspired amido sulfone-based Mannich reaction approach to assemble 2 advanced fragments under mild biphasic organocatalytic conditions. It successfully gave rise to stereodivergent access to 4 C2/C18-isomeric lankacyclinols but failed to efficiently deliver lactone-containing congeners through Stille macrocyclization. Facilitated by the thermolysis chemistry of ,-acetal to generate the requisite -acyl-1-azahexatriene species, we realized the projected Mannich macrocyclization and eight macrocyclic lankacidins can be produced by orchestrated desilylative manipulations. In this process, we were able to perform structural reassignments of isolankacidinol ( to ) and isolankacyclinol ( to ) and, for the first time, elucidate the natural occurrence of 2,18-bis--lankacyclinol (). Moreover, the inability of the current biomimetic route to cofurnish the reported structure of 2,18--lankacidinol A () triggered a proposed structural revision that is rooted in reconsidered biogenesis and was confirmed by a divergent synthesis that enabled us to identify the correct isomer (). Finally, the modular, diversity-oriented design also provided streamlined entries to acyclic 2,18--lankacidinol B () and the biosynthetic intermediate LC-KA05 () together with its C7--deacetylated congeners in all C4/C5-stereochemical variations (, -), culminating in a need for structural revision to the six-membered lactonic segment in LC-KA05-2. The selection and execution of biomimetic strategies in lankacidin total synthesis give rise to all the previously mentioned advantages at the current stage. The modular-based, late-stage diversified complex construction offers an exceptionally high level of synthetic flexibility for future synthetic forays toward newly isolated or chemically modified congeners within the lankacidin family.
天然产物是生物体通过各种高度选择性的酶催化化学反应以令人印象深刻的方式构建的。在过去的一个世纪里,人们对理解和模仿目标分子的潜在生物合成逻辑产生了浓厚的兴趣。生物仿生策略的成功实施通常在全合成中具有其他非生物途径所没有的独特价值,方法是:(1) 证实给定生物发生假设的化学可行性,并进一步为未来的生物合成研究提供一些有见地的启示;(2) 不仅提供了原始合成目标的显著更简洁的途径,而且还提供了多样化的生物相关同系物,这可能导致以前披露的天然产物的结构重新分配,或者预期发现未发现的天然产物。然而,对于设计的基本生物仿生转化,有时需要精心调整底物和反应条件的优化。从自然中汲取灵感可以为方法创新提供额外的动力。兰卡丁以前被用作口服兽药,具有作为下一代抗生素的潜力,可以解决由具有新型作用模式 (MoA) 的多药耐药菌引起的问题。该大环聚酮家族中高度敏感和密集功能化的内酯核心对化学全合成和衍生化构成了巨大的挑战。在本报告中,我们总结了一种统一的生物仿生方法的发展,该方法用于从易得的起始原料中以最长的线性 7-12 步合成 10 种兰卡丁抗生素及其线性生物合成中间体。我们的努力始于一种基于酰胺基砜的生物灵感的分子间曼尼希反应方法,该方法在温和的两相有机催化条件下组装 2 个高级片段。它成功地为 4 种 C2/C18-异构兰卡辛醇提供了立体发散的途径,但未能通过 Stille 大环化有效地提供含内酯的同系物。在,-缩醛热解化学的促进下生成所需的 -酰基-1-氮杂六烯物种,我们实现了预期的曼尼希大环化,并通过协调的脱硅烷基化操作可以生成 8 个大环兰卡丁。在这个过程中,我们能够对异兰卡丁醇( )和异兰卡环醇( )进行结构重分配,并首次阐明了 2,18-双--兰卡环醇( )的天然存在。此外,当前生物仿生途径无法提供报道的 2,18--兰卡丁醇 A () 的结构,这引发了结构修订的建议,该建议源于对生物发生的重新考虑,并通过发散合成得到证实,该合成使我们能够鉴定出正确的异构体( )。最后,模块化、多样化导向的设计还为无环 2,18--兰卡丁醇 B () 和生物合成中间体 LC-KA05 () 及其 C7--去乙酰化同系物提供了简化的入口,所有 C4/C5-立体化学变化( ,-),最终需要对 LC-KA05-2 中的六元内酯段进行结构修订。兰卡丁全合成中生物仿生策略的选择和执行在当前阶段产生了所有上述优势。基于模块的后期多样化复杂结构构建为兰卡丁家族中新型分离或化学修饰同系物的未来合成提供了极高的合成灵活性。