Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD.
Office of Data Science Strategy, National Institutes of Health, Bethesda, MD.
JCO Clin Cancer Inform. 2021 Aug;5:826-832. doi: 10.1200/CCI.21.00018.
Cloud computing has led to dramatic growth in the volume, variety, and velocity of cancer data. However, cloud platforms and services present new challenges for cancer research, particularly in understanding the practical tradeoffs between cloud performance, cost, and complexity. The goal of this study was to describe the practical challenges when using a cloud-based service to improve the cancer clinical trial matching process.
We collected information for all interventional cancer clinical trials from ClinicalTrials.gov and used the Google Cloud Healthcare Natural Language Application Programming Interface (API) to analyze clinical trial Title and Eligibility Criteria text. An informatics pipeline leveraging interoperability standards summarized the distribution of cancer clinical trials, genes, laboratory tests, and medications extracted from cloud-based entity analysis.
There were a total of 38,851 cancer-related clinical trials found in this study, with the distribution of cancer categories extracted from Title text significantly different than in ClinicalTrials.gov ( < .001). Cloud-based entity analysis of clinical trial criteria identified a total of 949 genes, 1,782 laboratory tests, 2,086 medications, and 4,902 National Cancer Institute Thesaurus terms, with estimated detection accuracies ranging from 12.8% to 89.9%. A total of 77,702 API calls processed an estimated 167,179 text records, which took a total of 1,979 processing-minutes (33.0 processing-hours), or approximately 1.5 seconds per API call.
Current general-purpose cloud health care tools-like the Google service in this study-should not be used for automated clinical trial matching unless they can perform effective extraction and classification of the clinical, genetic, and medication concepts central to precision oncology research. A strong understanding of the practical aspects of cloud computing will help researchers effectively navigate the vast data ecosystems in cancer research.
云计算导致癌症数据的数量、种类和速度呈现出巨大的增长。然而,云平台和服务为癌症研究带来了新的挑战,尤其是在理解云性能、成本和复杂性之间的实际权衡方面。本研究的目的是描述使用基于云的服务来改善癌症临床试验匹配过程中面临的实际挑战。
我们从 ClinicalTrials.gov 收集了所有干预性癌症临床试验的信息,并使用 Google Cloud Healthcare Natural Language Application Programming Interface(API)分析临床试验标题和资格标准文本。利用互操作性标准的信息学管道总结了从基于云的实体分析中提取的癌症临床试验、基因、实验室测试和药物的分布。
本研究共发现 38851 项与癌症相关的临床试验,从标题文本中提取的癌症类别分布与 ClinicalTrials.gov 显著不同(<0.001)。基于云的实体分析临床试验标准共确定了 949 个基因、1782 项实验室测试、2086 种药物和 4902 个国家癌症研究所词汇,估计检测准确率范围为 12.8%至 89.9%。总共进行了 77702 次 API 调用,处理了估计的 167179 个文本记录,总共需要 1979 个处理分钟(33.0 个处理小时),即每个 API 调用大约需要 1.5 秒。
当前的通用云医疗保健工具,如本研究中的 Google 服务,除非能够有效地提取和分类精准肿瘤学研究中与临床、遗传和药物相关的概念,否则不应用于自动临床试验匹配。对云计算实际方面的深入了解将帮助研究人员有效地驾驭癌症研究中的庞大数据生态系统。