Suppr超能文献

实施和应用医疗保健云计算服务和信息学在癌症临床试验数据方面的实际问题。

Practical Aspects of Implementing and Applying Health Care Cloud Computing Services and Informatics to Cancer Clinical Trial Data.

机构信息

Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD.

Office of Data Science Strategy, National Institutes of Health, Bethesda, MD.

出版信息

JCO Clin Cancer Inform. 2021 Aug;5:826-832. doi: 10.1200/CCI.21.00018.

Abstract

PURPOSE

Cloud computing has led to dramatic growth in the volume, variety, and velocity of cancer data. However, cloud platforms and services present new challenges for cancer research, particularly in understanding the practical tradeoffs between cloud performance, cost, and complexity. The goal of this study was to describe the practical challenges when using a cloud-based service to improve the cancer clinical trial matching process.

METHODS

We collected information for all interventional cancer clinical trials from ClinicalTrials.gov and used the Google Cloud Healthcare Natural Language Application Programming Interface (API) to analyze clinical trial Title and Eligibility Criteria text. An informatics pipeline leveraging interoperability standards summarized the distribution of cancer clinical trials, genes, laboratory tests, and medications extracted from cloud-based entity analysis.

RESULTS

There were a total of 38,851 cancer-related clinical trials found in this study, with the distribution of cancer categories extracted from Title text significantly different than in ClinicalTrials.gov ( < .001). Cloud-based entity analysis of clinical trial criteria identified a total of 949 genes, 1,782 laboratory tests, 2,086 medications, and 4,902 National Cancer Institute Thesaurus terms, with estimated detection accuracies ranging from 12.8% to 89.9%. A total of 77,702 API calls processed an estimated 167,179 text records, which took a total of 1,979 processing-minutes (33.0 processing-hours), or approximately 1.5 seconds per API call.

CONCLUSION

Current general-purpose cloud health care tools-like the Google service in this study-should not be used for automated clinical trial matching unless they can perform effective extraction and classification of the clinical, genetic, and medication concepts central to precision oncology research. A strong understanding of the practical aspects of cloud computing will help researchers effectively navigate the vast data ecosystems in cancer research.

摘要

目的

云计算导致癌症数据的数量、种类和速度呈现出巨大的增长。然而,云平台和服务为癌症研究带来了新的挑战,尤其是在理解云性能、成本和复杂性之间的实际权衡方面。本研究的目的是描述使用基于云的服务来改善癌症临床试验匹配过程中面临的实际挑战。

方法

我们从 ClinicalTrials.gov 收集了所有干预性癌症临床试验的信息,并使用 Google Cloud Healthcare Natural Language Application Programming Interface(API)分析临床试验标题和资格标准文本。利用互操作性标准的信息学管道总结了从基于云的实体分析中提取的癌症临床试验、基因、实验室测试和药物的分布。

结果

本研究共发现 38851 项与癌症相关的临床试验,从标题文本中提取的癌症类别分布与 ClinicalTrials.gov 显著不同(<0.001)。基于云的实体分析临床试验标准共确定了 949 个基因、1782 项实验室测试、2086 种药物和 4902 个国家癌症研究所词汇,估计检测准确率范围为 12.8%至 89.9%。总共进行了 77702 次 API 调用,处理了估计的 167179 个文本记录,总共需要 1979 个处理分钟(33.0 个处理小时),即每个 API 调用大约需要 1.5 秒。

结论

当前的通用云医疗保健工具,如本研究中的 Google 服务,除非能够有效地提取和分类精准肿瘤学研究中与临床、遗传和药物相关的概念,否则不应用于自动临床试验匹配。对云计算实际方面的深入了解将帮助研究人员有效地驾驭癌症研究中的庞大数据生态系统。

相似文献

4
5
Using informatics to improve cancer surveillance.
J Am Med Inform Assoc. 2020 Jul 1;27(9):1488-1495. doi: 10.1093/jamia/ocaa149.
6
A scoping review of cloud computing in healthcare.
BMC Med Inform Decis Mak. 2015 Mar 19;15:17. doi: 10.1186/s12911-015-0145-7.
7
Use of cloud computing in biomedicine.
J Biomol Struct Dyn. 2016 Dec;34(12):2688-2697. doi: 10.1080/07391102.2015.1127182. Epub 2016 Feb 17.
8
9
Safe "cloudification" of large images through picker APIs.
AMIA Annu Symp Proc. 2017 Feb 10;2016:342-351. eCollection 2016.
10
Health Information System in a Cloud Computing Context.
Stud Health Technol Inform. 2017;236:290-297.

引用本文的文献

1
Usage of the National Cancer Institute Cancer Research Data Commons by Researchers: A Scoping Review of the Literature.
JCO Clin Cancer Inform. 2024 Nov;8:e2400116. doi: 10.1200/CCI.24.00116. Epub 2024 Nov 13.
2
Nanopore sequencing data analysis using Microsoft Azure cloud computing service.
PLoS One. 2022 Dec 2;17(12):e0278609. doi: 10.1371/journal.pone.0278609. eCollection 2022.

本文引用的文献

1
Natural Language Processing to Ascertain Cancer Outcomes From Medical Oncologist Notes.
JCO Clin Cancer Inform. 2020 Aug;4:680-690. doi: 10.1200/CCI.20.00020.
2
A machine learning model for detecting invasive ductal carcinoma with Google Cloud AutoML Vision.
Comput Biol Med. 2020 Jul;122:103861. doi: 10.1016/j.compbiomed.2020.103861. Epub 2020 Jun 13.
3
Practical estimation of cloud storage costs for clinical genomic data.
Pract Lab Med. 2020 May 15;21:e00168. doi: 10.1016/j.plabm.2020.e00168. eCollection 2020 Aug.
7
Standards for Reporting Implementation Studies (StaRI) Statement.
BMJ. 2017 Mar 6;356:i6795. doi: 10.1136/bmj.i6795.
9
Natural Language Processing in Oncology: A Review.
JAMA Oncol. 2016 Jun 1;2(6):797-804. doi: 10.1001/jamaoncol.2016.0213.
10
Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov.
J Am Med Inform Assoc. 2016 Jul;23(4):750-7. doi: 10.1093/jamia/ocw009. Epub 2016 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验