Nickels Stefanie, Edwards Matthew D, Poole Sarah F, Winter Dale, Gronsbell Jessica, Rozenkrants Bella, Miller David P, Fleck Mathias, McLean Alan, Peterson Bret, Chen Yuanwei, Hwang Alan, Rust-Smith David, Brant Arthur, Campbell Andrew, Chen Chen, Walter Collin, Arean Patricia A, Hsin Honor, Myers Lance J, Marks William J, Mega Jessica L, Schlosser Danielle A, Conrad Andrew J, Califf Robert M, Fromer Menachem
Verily Life Sciences, South San Francisco, CA, United States.
Department of Computer Science, Dartmouth College, Hanover, NH, United States.
JMIR Ment Health. 2021 Aug 10;8(8):e27589. doi: 10.2196/27589.
Although effective mental health treatments exist, the ability to match individuals to optimal treatments is poor, and timely assessment of response is difficult. One reason for these challenges is the lack of objective measurement of psychiatric symptoms. Sensors and active tasks recorded by smartphones provide a low-burden, low-cost, and scalable way to capture real-world data from patients that could augment clinical decision-making and move the field of mental health closer to measurement-based care.
This study tests the feasibility of a fully remote study on individuals with self-reported depression using an Android-based smartphone app to collect subjective and objective measures associated with depression severity. The goals of this pilot study are to develop an engaging user interface for high task adherence through user-centered design; test the quality of collected data from passive sensors; start building clinically relevant behavioral measures (features) from passive sensors and active inputs; and preliminarily explore connections between these features and depression severity.
A total of 600 participants were asked to download the study app to join this fully remote, observational 12-week study. The app passively collected 20 sensor data streams (eg, ambient audio level, location, and inertial measurement units), and participants were asked to complete daily survey tasks, weekly voice diaries, and the clinically validated Patient Health Questionnaire (PHQ-9) self-survey. Pairwise correlations between derived behavioral features (eg, weekly minutes spent at home) and PHQ-9 were computed. Using these behavioral features, we also constructed an elastic net penalized multivariate logistic regression model predicting depressed versus nondepressed PHQ-9 scores (ie, dichotomized PHQ-9).
A total of 415 individuals logged into the app. Over the course of the 12-week study, these participants completed 83.35% (4151/4980) of the PHQ-9s. Applying data sufficiency rules for minimally necessary daily and weekly data resulted in 3779 participant-weeks of data across 384 participants. Using a subset of 34 behavioral features, we found that 11 features showed a significant (P<.001 Benjamini-Hochberg adjusted) Spearman correlation with weekly PHQ-9, including voice diary-derived word sentiment and ambient audio levels. Restricting the data to those cases in which all 34 behavioral features were present, we had available 1013 participant-weeks from 186 participants. The logistic regression model predicting depression status resulted in a 10-fold cross-validated mean area under the curve of 0.656 (SD 0.079).
This study finds a strong proof of concept for the use of a smartphone-based assessment of depression outcomes. Behavioral features derived from passive sensors and active tasks show promising correlations with a validated clinical measure of depression (PHQ-9). Future work is needed to increase scale that may permit the construction of more complex (eg, nonlinear) predictive models and better handle data missingness.
尽管存在有效的心理健康治疗方法,但将个体与最佳治疗方法相匹配的能力较差,且对治疗反应进行及时评估也很困难。这些挑战的一个原因是缺乏对精神症状的客观测量。智能手机记录的传感器数据和主动任务提供了一种低负担、低成本且可扩展的方式,用于从患者那里获取现实世界的数据,这可以增强临床决策,并使心理健康领域更接近基于测量的护理。
本研究测试了一项针对自我报告患有抑郁症的个体进行的完全远程研究的可行性,该研究使用基于安卓的智能手机应用程序来收集与抑郁严重程度相关的主观和客观测量数据。这项试点研究的目标是通过以用户为中心的设计开发一个吸引人的用户界面,以实现高任务依从性;测试从被动传感器收集的数据质量;开始从被动传感器和主动输入构建与临床相关的行为测量指标(特征);并初步探索这些特征与抑郁严重程度之间的联系。
总共600名参与者被要求下载研究应用程序,以加入这项完全远程的、为期12周的观察性研究。该应用程序被动收集20个传感器数据流(例如,环境音频水平、位置和惯性测量单元),并要求参与者完成每日调查任务、每周语音日记以及经过临床验证的患者健康问卷(PHQ - 9)自我调查。计算了派生行为特征(例如,每周在家花费的分钟数)与PHQ - 9之间的成对相关性。使用这些行为特征,我们还构建了一个弹性网络惩罚多元逻辑回归模型,用于预测抑郁与非抑郁的PHQ - 9分数(即二分法的PHQ - 9)。
共有415人登录了该应用程序。在为期12周的研究过程中,这些参与者完成了83.35%(4151/4980)的PHQ - 9调查。应用关于每日和每周最少必要数据的数据充足性规则,得到了384名参与者的3779个参与者 - 周的数据。使用34个行为特征的一个子集,我们发现有11个特征与每周的PHQ - 9显示出显著(P <.001,经本雅明尼 - 霍奇伯格校正)的斯皮尔曼相关性,包括语音日记派生的单词情感和环境音频水平。将数据限制在所有34个行为特征都存在的那些案例中,我们有来自186名参与者的1013个参与者 - 周的数据。预测抑郁状态的逻辑回归模型在10折交叉验证下的平均曲线下面积为0.656(标准差0.079)。
本研究为使用基于智能手机的抑郁症结果评估找到了强有力的概念验证。从被动传感器和主动任务派生的行为特征与经过验证的抑郁症临床测量指标(PHQ - 9)显示出有前景的相关性。未来需要开展工作以扩大规模,这可能允许构建更复杂(例如,非线性)的预测模型,并更好地处理数据缺失问题。