Suppr超能文献

投入项目精力的最佳位置:马铃薯种薯健康管理绩效映射框架及实例

Where to Invest Project Efforts for Greater Benefit: A Framework for Management Performance Mapping with Examples for Potato Seed Health.

机构信息

Plant Pathology Department, University of Florida, Gainesville, U.S.A.

Food Systems Institute, University of Florida, Gainesville, U.S.A.

出版信息

Phytopathology. 2022 Jul;112(7):1431-1443. doi: 10.1094/PHYTO-05-20-0202-R. Epub 2022 May 31.

Abstract

Policymakers and donors often need to identify the locations where technologies are most likely to have important effects, to increase the benefits from agricultural development or extension efforts. Higher-quality information may help to target the high-benefit locations, but often actions are needed with limited information. The value of information (VOI) in this context is formalized by evaluating the results of decision making guided by a set of specific information compared with the results of acting without considering that information. We present a framework for management performance mapping that includes evaluating the VOI for decision making about geographic priorities in regional intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate the use of recursive partitioning, XGBoost, and Bayesian network models to characterize the relationships among seed health and yield responses and environmental and management predictors used in studies of seed degeneration. These analyses address the expected performance of an intervention based on geographic predictor variables. In the Andean example, positive selection of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan example, there was the potential to target locations with higher technology adoption rates and with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. Targeting training to high management performance areas would often provide more benefits than would random selection of target areas. We illustrate how assessing the VOI can contribute to targeted development programs and support a culture of continuous improvement for interventions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

摘要

政策制定者和捐赠者通常需要确定技术最有可能产生重要影响的地点,以增加农业发展或推广工作的效益。更高质量的信息可能有助于确定高收益地点,但通常需要在有限信息的情况下采取行动。在这种情况下,信息价值(VOI)是通过评估在一组特定信息指导下的决策结果与不考虑该信息而采取行动的结果来正式确定的。我们提出了一个管理绩效映射框架,该框架包括评估在区域干预策略中的地理优先事项决策中的 VOI,案例研究包括安第斯和肯尼亚马铃薯种子系统。我们说明了如何使用递归分区、XGBoost 和贝叶斯网络模型来描述种子健康和产量响应与退化研究中使用的环境和管理预测因子之间的关系。这些分析解决了基于地理预测变量的干预措施的预期性能问题。在安第斯地区的案例中,从无症状植物中选择种子在厄瓜多尔的高海拔地区更为有效。在肯尼亚的案例中,有可能针对技术采用率较高且马铃薯耕地连通性较高的地点,即对区域流行具有更重要的作用。将培训目标对准高管理绩效地区通常会比随机选择目标地区带来更多收益。我们说明了如何评估 VOI 可以为有针对性的发展计划做出贡献,并支持干预措施的持续改进文化。[公式:见正文] 版权所有 © 2022 作者。这是一个在 CC BY 4.0 国际许可下分发的开放获取文章。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验