Suppr超能文献

由L1-层粘连蛋白连接界面介导的机械敏感轴突生长。

Mechanosensitive axon outgrowth mediated by L1-laminin clutch interface.

作者信息

Abe Kouki, Baba Kentarou, Huang Liguo, Wei Koay Teng, Okano Kazunori, Hosokawa Yoichiroh, Inagaki Naoyuki

机构信息

Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan.

Bio-processing Engineering Laboratory, Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan.

出版信息

Biophys J. 2021 Sep 7;120(17):3566-3576. doi: 10.1016/j.bpj.2021.08.009. Epub 2021 Aug 10.

Abstract

Mechanical properties of the extracellular environment modulate axon outgrowth. Growth cones at the tip of extending axons generate traction force for axon outgrowth by transmitting the force of actin filament retrograde flow, produced by actomyosin contraction and F-actin polymerization, to adhesive substrates through clutch and cell adhesion molecules. A molecular clutch between the actin filament flow and substrate is proposed to contribute to cellular mechanosensing. However, the molecular identity of the clutch interface responsible for mechanosensitive growth cone advance is unknown. We previously reported that mechanical coupling between actin filament retrograde flow and adhesive substrates through the clutch molecule shootin1a and the cell adhesion molecule L1 generates traction force for axon outgrowth and guidance. Here, we show that cultured mouse hippocampal neurons extend longer axons on stiffer substrates under elastic conditions that correspond to the soft brain environments. We demonstrate that this stiffness-dependent axon outgrowth requires actin-adhesion coupling mediated by shootin1a, L1, and laminin on the substrate. Speckle imaging analyses showed that L1 at the growth cone membrane switches between two adhesive states: L1 that is immobilized and that undergoes retrograde movement on the substrate. The duration of the immobilized phase was longer on stiffer substrates; this was accompanied by increases in actin-adhesion coupling and in the traction force exerted on the substrate. These data suggest that the interaction between L1 and laminin is enhanced on stiffer substrates, thereby promoting force generation for axon outgrowth.

摘要

细胞外环境的力学特性调节轴突生长。延伸轴突末端的生长锥通过将由肌动球蛋白收缩和F-肌动蛋白聚合产生的肌动蛋白丝逆行流的力,通过离合器和细胞粘附分子传递到粘附底物上,从而产生轴突生长所需的牵引力。有人提出肌动蛋白丝流与底物之间的分子离合器有助于细胞的机械传感。然而,负责机械敏感生长锥前进的离合器界面的分子身份尚不清楚。我们之前报道过,通过离合器分子shootin1a和细胞粘附分子L1,肌动蛋白丝逆行流与粘附底物之间的机械耦合产生轴突生长和导向所需的牵引力。在这里,我们表明,在与柔软脑环境相对应的弹性条件下,培养的小鼠海马神经元在更硬的底物上延伸出更长的轴突。我们证明,这种依赖于底物硬度的轴突生长需要由底物上的shootin1a、L1和层粘连蛋白介导的肌动蛋白-粘附耦合。斑点成像分析表明,生长锥膜上的L1在两种粘附状态之间转换:固定在底物上的L1和在底物上进行逆行运动的L1。在更硬的底物上,固定相的持续时间更长;这伴随着肌动蛋白-粘附耦合和施加在底物上的牵引力的增加。这些数据表明,在更硬的底物上,L1与层粘连蛋白之间的相互作用增强,从而促进轴突生长的力的产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验