Bellin Nicolò, Calzolari Mattia, Callegari Emanuele, Bonilauri Paolo, Grisendi Annalisa, Dottori Michele, Rossi Valeria
University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A, 43124 Parma, Italy.
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini" (IZSLER), Brescia, Italy.
Infect Genet Evol. 2021 Nov;95:105034. doi: 10.1016/j.meegid.2021.105034. Epub 2021 Aug 9.
Geometric morphometrics allows researchers to use the specific software to quantify and to visualize morphological differences between taxa from insect wings. Our objective was to assess wing geometry to distinguish four Anopheles sibling species of the Maculipennis complex, An. maculipennis s. s., An. daciae sp. inq., An. atroparvus and An. melanoon, found in Northern Italy. We combined the geometric morphometric approach with different machine learning alghorithms: support vector machine (SVM), random forest (RF), artificial neural network (ANN) and an ensemble model (EN). Centroid size was smaller in An. atroparvus than in An. maculipennis s. s. and An. daciae sp. inq. Principal component analysis (PCA) explained only 33% of the total variance and appeared not very useful to discriminate among species, and in particular between An. maculipennis s. s. and An. daciae sp. inq. The performance of four different machine learning alghorithms using procrustes coordinates of wing shape as predictors was evaluated. All models showed ROC-AUC and PRC-AUC values that were higher than the random classifier but the SVM algorithm maximized the most metrics on the test set. The SVM algorithm with radial basis function allowed the correct classification of 83% of An. maculipennis s. s. and 79% of An. daciae sp. inq. ROC-AUC analysis showed that three landmarks, 11, 16 and 15, were the most important procrustes coordinates in mean wing shape comparison between An. maculipennis s. s. and An. daciae sp. inq. The pattern in the three-dimensional space of the most important procrustes coordinates showed a clearer differentiation between the two species than the PCA. Our study demonstrated that machine learning algorithms could be a useful tool combined with the wing geometric morphometric approach.
几何形态测量学使研究人员能够使用特定软件来量化和可视化昆虫翅膀类群之间的形态差异。我们的目标是评估翅膀几何形状,以区分在意大利北部发现的按蚊复合体中的四个近缘种,即黄斑按蚊指名亚种、达契亚按蚊、阿氏按蚊和黑腹按蚊。我们将几何形态测量方法与不同的机器学习算法相结合:支持向量机(SVM)、随机森林(RF)、人工神经网络(ANN)和集成模型(EN)。阿氏按蚊的质心大小比黄斑按蚊指名亚种和达契亚按蚊的小。主成分分析(PCA)仅解释了总方差的33%,似乎对区分物种不是很有用,特别是在黄斑按蚊指名亚种和达契亚按蚊之间。使用翅膀形状的普氏坐标作为预测因子,评估了四种不同机器学习算法的性能。所有模型的ROC-AUC和PRC-AUC值均高于随机分类器,但SVM算法在测试集上最大化了大多数指标。具有径向基函数的SVM算法能够正确分类83%的黄斑按蚊指名亚种和79%的达契亚按蚊。ROC-AUC分析表明,在黄斑按蚊指名亚种和达契亚按蚊平均翅膀形状比较中,三个地标点,即11、16和15,是最重要的普氏坐标。最重要的普氏坐标在三维空间中的模式显示,这两个物种之间的差异比PCA更明显。我们的研究表明,机器学习算法可以作为一种有用的工具与翅膀几何形态测量方法相结合。