Suppr超能文献

基于功能数据几何形态计量学和机器学习的鼩形目颅齿形态分类。

Functional data geometric morphometrics with machine learning for craniodental shape classification in shrews.

机构信息

Faculty of Science, Institute of Mathematical Sciences, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.

Laboratoire Paul Painlevé CNRS 8524, INRIA-MODAL, Université de Lille, Villeneuve d'Ascq, France.

出版信息

Sci Rep. 2024 Jul 6;14(1):15579. doi: 10.1038/s41598-024-66246-z.

Abstract

This work proposes a functional data analysis approach for morphometrics in classifying three shrew species (S. murinus, C. monticola, and C. malayana) from Peninsular Malaysia. Functional data geometric morphometrics (FDGM) for 2D landmark data is introduced and its performance is compared with classical geometric morphometrics (GM). The FDGM approach converts 2D landmark data into continuous curves, which are then represented as linear combinations of basis functions. The landmark data was obtained from 89 crania of shrew specimens based on three craniodental views (dorsal, jaw, and lateral). Principal component analysis and linear discriminant analysis were applied to both GM and FDGM methods to classify the three shrew species. This study also compared four machine learning approaches (naïve Bayes, support vector machine, random forest, and generalised linear model) using predicted PC scores obtained from both methods (a combination of all three craniodental views and individual views). The analyses favoured FDGM and the dorsal view was the best view for distinguishing the three species.

摘要

本研究提出了一种功能数据分析方法,用于对来自马来西亚半岛的三种鼩鼱(S. murinus、C. monticola 和 C. malayana)进行形态分类。介绍了二维地标数据的功能数据分析几何形态测量学(FDGM),并将其性能与经典几何形态测量学(GM)进行了比较。FDGM 方法将二维地标数据转换为连续曲线,然后将其表示为基函数的线性组合。地标数据是基于三个颅面视图(背面、颌骨和侧面)从 89 只鼩鼱标本的颅骨中获得的。主成分分析和线性判别分析分别应用于 GM 和 FDGM 方法,以对三种鼩鼱进行分类。本研究还比较了四种机器学习方法(朴素贝叶斯、支持向量机、随机森林和广义线性模型),使用从两种方法(所有三个颅面视图和单个视图的组合)获得的预测 PC 得分。分析结果支持 FDGM,并且背面视图是区分这三个物种的最佳视图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a821/11227550/7e694e660e48/41598_2024_66246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验