Suppr超能文献

从磁共振成像测量的导水管流动和尺寸计算脑室外隙压力。

Transmantle Pressure Computed from MR Imaging Measurements of Aqueduct Flow and Dimensions.

机构信息

From the Department of Mechanical and Aerospace Engineering (S.J.S., E.C.-H., A.L.S., J.C.L.), University of California San Diego, La Jolla, California

Departamento de Ingeniería Térmica y de Fluidos (W.C.), Grupo de Mecánica de Fluidos, Universidad Carlos III de Madrid, Leganés (Madrid), Spain.

出版信息

AJNR Am J Neuroradiol. 2021 Oct;42(10):1815-1821. doi: 10.3174/ajnr.A7246. Epub 2021 Aug 12.

Abstract

BACKGROUND AND PURPOSE

Measuring transmantle pressure, the instantaneous pressure difference between the lateral ventricles and the cranial subarachnoid space, by intracranial pressure sensors has limitations. The aim of this study was to compute transmantle pressure noninvasively with a novel nondimensional fluid mechanics model in volunteers and to identify differences related to age and aqueductal dimensions.

MATERIALS AND METHODS

Brain MR images including cardiac-gated 2D phase-contrast MR imaging and fast-spoiled gradient recalled imaging were obtained in 77 volunteers ranging in age from 25-92 years of age. Transmantle pressure was computed during the cardiac cycle with a fluid mechanics model from the measured aqueductal flow rate, stroke volume, aqueductal length and cross-sectional area, and heart rate. Peak pressures during caudal and rostral aqueductal flow were tabulated. The computed transmantle pressure, aqueductal dimensions, and stroke volume were estimated, and the differences due to sex and age were calculated and tested for significance.

RESULTS

Peak transmantle pressure was calculated with the nondimensional averaged 14.4 (SD, 6.5) Pa during caudal flow and 6.9 (SD, 2.8) Pa during rostral flow. It did not differ significantly between men and women or correlate significantly with heart rate. Peak transmantle pressure increased with age and correlated with aqueductal dimensions and stroke volume.

CONCLUSIONS

The nondimensional fluid mechanics model for computing transmantle pressure detected changes in pressure related to age and aqueductal dimensions. This novel methodology can be easily used to investigate the clinical relevance of the transmantle pressure in normal pressure hydrocephalus, pediatric communicating hydrocephalus, and other CSF disorders.

摘要

背景与目的

通过颅内压传感器测量侧脑室与颅脊蛛网膜下腔之间的瞬态跨膜压力(transmantle pressure)存在一定局限性。本研究旨在利用一种新的无因次流体力学模型,在志愿者中无创计算跨膜压力,并识别与年龄和导水管尺寸相关的差异。

材料与方法

共纳入 77 名志愿者,年龄 25-92 岁,进行了心脏门控二维相位对比磁共振成像和快速扰相梯度回波成像。利用流体力学模型,从测量的导水管流率、心排量、导水管长度和横截面积以及心率,计算跨膜压力。记录导水管向心和离心流动时的峰值压力。计算出的跨膜压力、导水管尺寸和心排量,并评估其性别和年龄差异,计算差异并进行显著性检验。

结果

计算出的跨膜压力峰值在向心流动时为平均 14.4(标准差 6.5)Pa,在离心流动时为 6.9(标准差 2.8)Pa。其在男女之间无显著差异,与心率也无显著相关性。跨膜压力峰值随年龄增加而增加,与导水管尺寸和心排量呈正相关。

结论

用于计算跨膜压力的无因次流体力学模型检测到与年龄和导水管尺寸相关的压力变化。这种新方法可用于研究正常压力脑积水、小儿交通性脑积水和其他 CSF 疾病中跨膜压力的临床相关性。

相似文献

1
Transmantle Pressure Computed from MR Imaging Measurements of Aqueduct Flow and Dimensions.
AJNR Am J Neuroradiol. 2021 Oct;42(10):1815-1821. doi: 10.3174/ajnr.A7246. Epub 2021 Aug 12.
5
Quantitative assessment of cerebrospinal fluid flow and volume in enlargement of the subarachnoid spaces of infancy using MRI.
Pediatr Radiol. 2023 Aug;53(9):1919-1926. doi: 10.1007/s00247-023-05659-w. Epub 2023 Apr 27.
6
Aqueductal Stroke Volume: Comparisons with Intracranial Pressure Scores in Idiopathic Normal Pressure Hydrocephalus.
AJNR Am J Neuroradiol. 2015 Sep;36(9):1623-30. doi: 10.3174/ajnr.A4340. Epub 2015 May 14.
7
An In-Vitro Experimental Investigation of Oscillatory Flow in the Cerebral Aqueduct.
Res Sq. 2023 Apr 3:rs.3.rs-2757861. doi: 10.21203/rs.3.rs-2757861/v1.
9
10

引用本文的文献

1
Arterial pulsations and transmantle pressure synergetically drive glymphatic flow.
Sci Rep. 2025 Apr 21;15(1):13798. doi: 10.1038/s41598-025-97631-x.
4
An experimental investigation of oscillatory flow in the cerebral aqueduct.
Eur J Mech B Fluids. 2024 May-Jun;105:180-191. doi: 10.1016/j.euromechflu.2024.01.010. Epub 2024 Jan 23.
5
Are brain displacements and pressures within the parenchyma induced by surface pressure differences? A computational modelling study.
PLoS One. 2023 Dec 27;18(12):e0288668. doi: 10.1371/journal.pone.0288668. eCollection 2023.
6
A one-dimensional model for the pulsating flow of cerebrospinal fluid in the spinal canal.
J Fluid Mech. 2022 May 25;939. doi: 10.1017/jfm.2022.215. Epub 2022 Mar 30.

本文引用的文献

1
Extracranial versus intracranial hydro-hemodynamics during aging: a PC-MRI pilot cross-sectional study.
Fluids Barriers CNS. 2020 Jan 14;17(1):1. doi: 10.1186/s12987-019-0163-4.
2
Sex and Age Dependencies of Aqueductal Cerebrospinal Fluid Dynamics Parameters in Healthy Subjects.
Front Aging Neurosci. 2019 Aug 2;11:199. doi: 10.3389/fnagi.2019.00199. eCollection 2019.
5
Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus.
Neuroimage Clin. 2018;20:731-741. doi: 10.1016/j.nicl.2018.09.006. Epub 2018 Sep 14.
6
Interactions between Flow Oscillations and Biochemical Parameters in the Cerebrospinal Fluid.
Front Aging Neurosci. 2016 Jun 29;8:154. doi: 10.3389/fnagi.2016.00154. eCollection 2016.
7
Decompressive craniectomy arrests pulsatile aqueductal CSF flux: An in vivo demonstration using phase-contrast MRI. Case report.
Br J Neurosurg. 2015 Jun;29(3):440-2. doi: 10.3109/02688697.2014.997671. Epub 2015 May 11.
8
Reprint of: Radiological assessment of hydrocephalus: new theories and implications for therapy.
Neuroradiol J. 2006 Oct 19;19(4):475-95. doi: 10.1177/197140090601900407.
9
Simple patient-based transmantle pressure and shear estimate from cine phase-contrast MRI in cerebral aqueduct.
IEEE Trans Biomed Eng. 2012 Oct;59(10):2874-83. doi: 10.1109/TBME.2012.2210716. Epub 2012 Aug 8.
10
Evaluation of automatic measurement of the intracranial volume based on quantitative MR imaging.
AJNR Am J Neuroradiol. 2012 Nov;33(10):1951-6. doi: 10.3174/ajnr.A3067. Epub 2012 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验