Institute of Fluid Mechanics of Toulouse, UMR 5502, University of Toulouse III, 31000 Toulouse, France.
IEEE Trans Biomed Eng. 2012 Oct;59(10):2874-83. doi: 10.1109/TBME.2012.2210716. Epub 2012 Aug 8.
From measurements of the oscillating flux of the cerebrospinal fluid (CSF) in the aqueduct of Sylvius, we elaborate a patient-based methodology for transmantle pressure (TRP) and shear evaluation. High-resolution anatomical magnetic resonance imaging first permits a precise 3-D anatomical digitalized reconstruction of the Sylvius's aqueduct shape. From this, a very fast approximate numerical flow computation, nevertheless consistent with analytical predictions, is developed. Our approach includes the main contributions of inertial effects coming from the pulsatile flow and curvature effects associated with the aqueduct bending. Integrating the pressure along the aqueduct longitudinal centerline enables the total dynamic hydraulic admittances of the aqueduct to be evaluated, which is the pre-eminent contribution to the CSF pressure difference between the lateral ventricles and the subarachnoidal spaces also called the TRP. The application of the method to 20 healthy human patients validates the hypothesis of the proposed approach and provides a first database for normal aqueduct CSF flow. Finally, the implications of our results for modeling and evaluating intracranial cerebral pressure are discussed.
我们从对西尔维厄斯导水管中脑脊液(CSF)的振荡通量的测量中,阐述了一种基于患者的方法,用于评估跨脑膜压力(TRP)和剪切力。高分辨率解剖磁共振成像首先允许对西尔维厄斯导水管的精确 3D 解剖数字化重建。由此,开发了一种非常快速的近似数值流动计算,但与分析预测一致。我们的方法包括来自脉动流的惯性效应和与导水管弯曲相关的曲率效应的主要贡献。沿着导水管的纵向中心线积分压力,可评估导水管的总动态水力导纳,这是侧向脑室和蛛网膜下腔之间 CSF 压力差(也称为 TRP)的主要贡献。该方法在 20 名健康人类患者中的应用验证了所提出方法的假设,并提供了正常导水管 CSF 流动的第一个数据库。最后,讨论了我们的结果对颅内脑压建模和评估的影响。