文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The influence of the gut microbiota on the bioavailability of oral drugs.

作者信息

Zhang Xintong, Han Ying, Huang Wei, Jin Mingji, Gao Zhonggao

机构信息

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

出版信息

Acta Pharm Sin B. 2021 Jul;11(7):1789-1812. doi: 10.1016/j.apsb.2020.09.013. Epub 2020 Sep 28.


DOI:10.1016/j.apsb.2020.09.013
PMID:34386321
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8343123/
Abstract

Due to its safety, convenience, low cost and good compliance, oral administration attracts lots of attention. However, the efficacy of many oral drugs is limited to their unsatisfactory bioavailability in the gastrointestinal tract. One of the critical and most overlooked factors is the symbiotic gut microbiota that can modulate the bioavailability of oral drugs by participating in the biotransformation of oral drugs, influencing the drug transport process and altering some gastrointestinal properties. In this review, we summarized the existing research investigating the possible relationship between the gut microbiota and the bioavailability of oral drugs, which may provide great ideas and useful instructions for the design of novel drug delivery systems or the achievement of personalized medicine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/28aa9e6815b9/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/11293b8db4c6/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/4525bde016d7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/2ea85310255a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/d89388f4346b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/7bdad2dd2b2a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/24f3d3b0491a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/53718b41855f/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/28aa9e6815b9/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/11293b8db4c6/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/4525bde016d7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/2ea85310255a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/d89388f4346b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/7bdad2dd2b2a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/24f3d3b0491a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/53718b41855f/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db21/8343123/28aa9e6815b9/gr7.jpg

相似文献

[1]
The influence of the gut microbiota on the bioavailability of oral drugs.

Acta Pharm Sin B. 2021-7

[2]
Understanding absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles.

Acta Pharm Sin B. 2017-5

[3]
Bile acid nuclear receptor FXR and digestive system diseases.

Acta Pharm Sin B. 2015-3

[4]
Gut Microbiota-Mediated Bile Acid Transformations Alter the Cellular Response to Multidrug Resistant Transporter Substrates in Vitro: Focus on P-glycoprotein.

Mol Pharm. 2018-11-16

[5]
Transporter-Mediated Drug-Drug Interactions and Their Significance.

Adv Exp Med Biol. 2019

[6]
Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases.

Acta Pharm Sin B. 2022-5

[7]
Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

Mol Pharm. 2017-4-3

[8]
Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology.

World J Gastroenterol. 2015-11-7

[9]
Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics.

Drug Metab Dispos. 2012-6-18

[10]
Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism.

Biochem Pharmacol. 2013-6-6

引用本文的文献

[1]
pH-responsive magnetic FeO modified chitosan nanoparticles loaded with β-acids to improve colorectal cancer treatment.

Mater Today Bio. 2025-7-29

[2]
Optimization of fermentation process for Sihuang compound with Bacillus subtilis and its efficacy against Escherichia coli infections and growth performance in broilers.

Poult Sci. 2025-7-23

[3]
Postbiotics: Modulation of the Gut Microbiota and Potential for Association with Nanotechnology.

Probiotics Antimicrob Proteins. 2025-7-18

[4]
Gut bacteria and the host synergies promote resveratrol metabolism and induce tolerance in ALD mice.

NPJ Biofilms Microbiomes. 2025-7-14

[5]
The role of the gut microbiota and its metabolites: a new predictor in diabetes and its complications.

Eur J Med Res. 2025-7-9

[6]
Cardiotonic Steroids as a Potential Novel Approach for Immunomodulation in Inflammatory Bowel Disease.

J Clin Med. 2025-6-11

[7]
Decorating probiotics with a triggerable and catalytic shell for synergistically enhanced colitis biotherapy.

Mater Today Bio. 2025-5-12

[8]
Associations between the gut microbiota and the metabolism rate of tacrolimus in kidney transplant recipients during the early posttransplant period.

Arch Pharm Res. 2025-5-19

[9]
Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse.

Genes (Basel). 2025-3-30

[10]
GLP-1RAs attenuated obesity and reversed leptin resistance partly activating the microbiome-derived inosine/A2A pathway.

Acta Pharm Sin B. 2025-2

本文引用的文献

[1]
Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery.

Nanoscale Res Lett. 2020-6-1

[2]
The central role of gut microbiota in drug metabolism and personalized medicine.

Future Med Chem. 2020-7

[3]
Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats.

Front Microbiol. 2020-4-24

[4]
A dual pH and microbiota-triggered coating (Phloral™) for fail-safe colonic drug release.

Int J Pharm. 2020-6-15

[5]
A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films.

Int J Biol Macromol. 2020-8-15

[6]
OPTICORE™, an innovative and accurate colonic targeting technology.

Int J Pharm. 2020-6-15

[7]
Injection Molded Capsules for Colon Delivery Combining Time-Controlled and Enzyme-Triggered Approaches.

Int J Mol Sci. 2020-3-11

[8]
Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia.

PLoS One. 2020-3-12

[9]
Use of a genetically engineered E. coli overexpressing β-glucuronidase accompanied by glycyrrhizic acid, a natural and anti-inflammatory agent, for directed treatment of colon carcinoma in a mouse model.

Int J Pharm. 2020-2-17

[10]
Age-Related Changes in the Gut Microbiota Modify Brain Lipid Composition.

Front Cell Infect Microbiol. 2020-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索