Suppr超能文献

利用非线性实验设计优化肌肉细胞培养基。

Optimization of muscle cell culture media using nonlinear design of experiments.

机构信息

Department of Chemical Engineering, University of California, Davis, California, USA.

Department of Viticulture and Enology, University of California, Davis, California, USA.

出版信息

Biotechnol J. 2021 Nov;16(11):e2100228. doi: 10.1002/biot.202100228. Epub 2021 Sep 2.

Abstract

Optimizing media for biological processes, such as those used in tissue engineering and cultivated meat production, is difficult due to the extensive experimentation required, number of media components, nonlinear and interactive responses, and the number of conflicting design objectives. Here we demonstrate the capacity of a nonlinear design-of-experiments (DOE) method to predict optimal media conditions in fewer experiments than a traditional DOE. The approach is based on a hybridization of a coordinate search for local optimization with dynamically adjusted search spaces and a global search method utilizing a truncated genetic algorithm using radial basis functions to store and model prior knowledge. Using this method, we were able to reduce the cost of muscle cell proliferation media while maintaining cell growth 48 h after seeding using 30 common components of typical commercial growth medium in fewer experiments than a traditional DOE (70 vs. 103). While we clearly demonstrated that the experimental optimization algorithm significantly outperforms conventional DOE, due to the choice of a 48 h growth assay weighted by medium cost as an objective function, these findings were limited to performance at a single passage, and did not generalize to growth over multiple passages. This underscores the importance of choosing objective functions that align well with process goals.

摘要

由于需要进行大量的实验、培养基成分数量众多、非线性和交互响应以及存在多个相互冲突的设计目标,因此优化用于组织工程和培养肉生产等生物过程的培养基非常困难。在这里,我们展示了一种非线性实验设计 (DOE) 方法的能力,该方法可以比传统 DOE 更少的实验来预测最佳培养基条件。该方法基于局部优化的坐标搜索与动态调整的搜索空间的混合,以及利用使用径向基函数存储和建模先验知识的截断遗传算法的全局搜索方法。使用这种方法,我们能够在更少的实验中降低肌肉细胞增殖培养基的成本,同时在接种后 48 小时保持细胞生长,使用典型商业生长培养基中的 30 种常见成分,比传统 DOE 少(70 比 103)。虽然我们清楚地表明,实验优化算法明显优于传统 DOE,但由于选择了以培养基成本加权的 48 小时生长测定作为目标函数,这些发现仅限于单个传代的性能,并且不能推广到多个传代的生长。这凸显了选择与工艺目标高度一致的目标函数的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验