V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia.
V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia.
J Proteomics. 2021 Sep 30;248:104350. doi: 10.1016/j.jprot.2021.104350. Epub 2021 Aug 10.
Characterization of post-translational modifications is among the most challenging tasks in tandem mass spectrometry-based proteomics which has yet to find an efficient solution. The ultra-tolerant (open) database search attempts to meet this challenge. However, interpretation of the mass shifts observed in open search still requires an effective and automated solution. We have previously introduced the AA_stat tool for analysis of amino acid frequencies at different mass shifts and generation of hypotheses on unaccounted in vitro modifications. Here, we report on the new version of AA_stat, which now complements amino acid frequency statistics with a number of new features: (1) MS/MS-based localization of mass shifts and localization scoring, including shifts which are the sum of modifications; (2) inferring fixed modifications to increase method sensitivity; (3) inferring monoisotopic peak assignment errors and variable modifications based on abundant mass shift localizations to increase the yield of closed search; (4) new mass calibration algorithm to account for partial systematic shifts; (5) interactive integration of all results and a rated list of possible mass shift interpretations. With these options, we improve interpretation of open search results and demonstrate the utility of AA_stat for profiling of abundant and rare amino acid modifications. AA_stat is implemented in Python as an open-source tool available at https://github.com/SimpleNumber/aa_stat. SIGNIFICANCE: Mass spectrometry-based PTM characterization has a long history, yet most of the methods rely on a priori knowledge of modifications of interest and do not provide a whole proteome modification landscape in a blind manner. The open database search is an efficient attempt to address this challenge by identifying peptides with mass shifts corresponding to possible modifications. Then, interpreting these mass shifts is required. Therefore, development of bioinformatics software for post-processing of the open search results, which is capable of detection and accurate annotation of new or unexpected modifications, from characterization of sample preparation efficiency and quality control to discovery of rare post-translational modifications, is of high importance.
基于串联质谱的蛋白质组学中,对翻译后修饰的鉴定是最具挑战性的任务之一,目前尚未找到有效的解决方案。超耐受(开放)数据库搜索试图应对这一挑战。然而,要解释在开放搜索中观察到的质量位移,仍然需要有效的自动化解决方案。我们之前介绍了 AA_stat 工具,用于分析不同质量位移处的氨基酸频率,并生成关于未被发现的体外修饰的假说。在这里,我们报告了 AA_stat 的新版本,它现在用许多新功能补充了氨基酸频率统计:(1)基于 MS/MS 的质量位移定位和定位评分,包括修饰的总和;(2)推断固定修饰以提高方法灵敏度;(3)根据丰富的质量位移定位推断单一同位素峰分配错误和可变修饰,以增加封闭搜索的产量;(4)新的质量校准算法,用于解释部分系统偏移;(5)所有结果的交互式集成以及可能的质量位移解释的评级列表。通过这些选项,我们改善了对开放搜索结果的解释,并展示了 AA_stat 在分析丰富和稀有氨基酸修饰方面的效用。AA_stat 是用 Python 实现的开源工具,可在 https://github.com/SimpleNumber/aa_stat 上获得。意义:基于质谱的 PTM 鉴定具有悠久的历史,但大多数方法都依赖于感兴趣的修饰的先验知识,并且不能以盲方式提供整个蛋白质组修饰图谱。开放数据库搜索是一种有效的尝试,通过识别与可能的修饰相对应的质量位移的肽来解决这一挑战。然后,需要解释这些质量位移。因此,开发用于后处理开放搜索结果的生物信息学软件,从样品制备效率和质量控制的特征到稀有翻译后修饰的发现,从检测和准确注释新的或意外的修饰,具有重要意义。