Suppr超能文献

一种关于内源性注意和外源性注意如何差异化地改变视觉感知的可计算成像模型。

An image-computable model of how endogenous and exogenous attention differentially alter visual perception.

机构信息

Center for Neural Science, New York University, New York, NY 10003;

Center for Neural Science, New York University, New York, NY 10003.

出版信息

Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2106436118.

Abstract

Attention alters perception across the visual field. Typically, endogenous (voluntary) and exogenous (involuntary) attention similarly improve performance in many visual tasks, but they have differential effects in some tasks. Extant models of visual attention assume that the effects of these two types of attention are identical and consequently do not explain differences between them. Here, we develop a model of spatial resolution and attention that distinguishes between endogenous and exogenous attention. We focus on texture-based segmentation as a model system because it has revealed a clear dissociation between both attention types. For a texture for which performance peaks at parafoveal locations, endogenous attention improves performance across eccentricity, whereas exogenous attention improves performance where the resolution is low (peripheral locations) but impairs it where the resolution is high (foveal locations) for the scale of the texture. Our model emulates sensory encoding to segment figures from their background and predict behavioral performance. To explain attentional effects, endogenous and exogenous attention require separate operating regimes across visual detail (spatial frequency). Our model reproduces behavioral performance across several experiments and simultaneously resolves three unexplained phenomena: 1) the parafoveal advantage in segmentation, 2) the uniform improvements across eccentricity by endogenous attention, and 3) the peripheral improvements and foveal impairments by exogenous attention. Overall, we unveil a computational dissociation between each attention type and provide a generalizable framework for predicting their effects on perception across the visual field.

摘要

注意会改变整个视野中的感知。通常情况下,内源性(自愿)和外源性(非自愿)注意在许多视觉任务中都能同样提高表现,但在某些任务中它们有不同的影响。现有的视觉注意力模型假设这两种类型的注意力的效果是相同的,因此无法解释它们之间的差异。在这里,我们开发了一种区分内源性和外源性注意的空间分辨率和注意力模型。我们专注于基于纹理的分割作为模型系统,因为它揭示了这两种注意类型之间的明显分离。对于性能在周边位置达到峰值的纹理,内源性注意会提高整个离焦度的表现,而外源性注意则会在分辨率较低的位置(周边位置)提高表现,但会在分辨率较高的位置(中央位置)降低表现。我们的模型模拟了感官编码,将图形与背景分割开来,并预测行为表现。为了解释注意力的影响,内源性和外源性注意力需要在视觉细节(空间频率)上分别运行。我们的模型再现了多个实验的行为表现,同时解决了三个未解释的现象:1)分割中的周边优势,2)内源性注意在整个离焦度上的均匀提高,以及 3)外源性注意在周边的提高和中央的降低。总的来说,我们揭示了每种注意力类型之间的计算分离,并提供了一个可推广的框架来预测它们在整个视野中的感知影响。

相似文献

1
An image-computable model of how endogenous and exogenous attention differentially alter visual perception.
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2106436118.
2
Differential Effects of Endogenous and Exogenous Attention on Sensory Tuning.
J Neurosci. 2022 Feb 16;42(7):1316-1327. doi: 10.1523/JNEUROSCI.0892-21.2021. Epub 2021 Dec 27.
4
Attention Modifies Spatial Resolution According to Task Demands.
Psychol Sci. 2017 Mar;28(3):285-296. doi: 10.1177/0956797616679634. Epub 2017 Jan 1.
6
Textures shape the attentional focus: evidence from exogenous and endogenous cueing.
Atten Percept Psychophys. 2013 Nov;75(8):1644-66. doi: 10.3758/s13414-013-0508-z.
9
How Attention Affects Spatial Resolution.
Cold Spring Harb Symp Quant Biol. 2014;79:149-60. doi: 10.1101/sqb.2014.79.024687. Epub 2015 May 6.
10
Differential impact of endogenous and exogenous attention on activity in human visual cortex.
Sci Rep. 2020 Dec 4;10(1):21274. doi: 10.1038/s41598-020-78172-x.

引用本文的文献

1
Understanding speech in "noise" or free energy minimization in the soundscapes of the anthropocene.
Front Neurosci. 2025 Mar 14;19:1534425. doi: 10.3389/fnins.2025.1534425. eCollection 2025.
2
Adaptation and exogenous attention interact in the early visual cortex: A TMS study.
iScience. 2024 Oct 11;27(11):111155. doi: 10.1016/j.isci.2024.111155. eCollection 2024 Nov 15.
3
Dynamic estimation of the attentional field from visual cortical activity.
bioRxiv. 2024 Oct 8:2024.09.05.611383. doi: 10.1101/2024.09.05.611383.
4
When temporal attention interacts with expectation.
Sci Rep. 2024 Feb 26;14(1):4624. doi: 10.1038/s41598-024-55399-6.
5
The visible gorilla: Unexpected fast-not physically salient-Objects are noticeable.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2214930120. doi: 10.1073/pnas.2214930120. Epub 2023 May 22.
6
Exogenous temporal attention varies with temporal uncertainty.
J Vis. 2023 Mar 1;23(3):9. doi: 10.1167/jov.23.3.9.
8
Transcranial magnetic stimulation to frontal but not occipital cortex disrupts endogenous attention.
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2219635120. doi: 10.1073/pnas.2219635120. Epub 2023 Feb 28.
9
Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1.
Nat Commun. 2022 Oct 29;13(1):6469. doi: 10.1038/s41467-022-34134-7.

本文引用的文献

1
Differential Effects of Endogenous and Exogenous Attention on Sensory Tuning.
J Neurosci. 2022 Feb 16;42(7):1316-1327. doi: 10.1523/JNEUROSCI.0892-21.2021. Epub 2021 Dec 27.
2
Differential impact of endogenous and exogenous attention on activity in human visual cortex.
Sci Rep. 2020 Dec 4;10(1):21274. doi: 10.1038/s41598-020-78172-x.
3
Extinguishing Exogenous Attention via Transcranial Magnetic Stimulation.
Curr Biol. 2020 Oct 19;30(20):4078-4084.e3. doi: 10.1016/j.cub.2020.07.068. Epub 2020 Aug 13.
5
The spatial distribution of attention.
Curr Opin Psychol. 2019 Oct;29:76-81. doi: 10.1016/j.copsyc.2018.12.008. Epub 2018 Dec 18.
7
Specific Visual Subregions of TPJ Mediate Reorienting of Spatial Attention.
Cereb Cortex. 2018 Jul 1;28(7):2375-2390. doi: 10.1093/cercor/bhx140.
8
Textures as Probes of Visual Processing.
Annu Rev Vis Sci. 2017 Sep 15;3:275-296. doi: 10.1146/annurev-vision-102016-061316.
9
Attention Modifies Spatial Resolution According to Task Demands.
Psychol Sci. 2017 Mar;28(3):285-296. doi: 10.1177/0956797616679634. Epub 2017 Jan 1.
10
Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.
J Neurosci. 2015 Sep 30;35(39):13419-29. doi: 10.1523/JNEUROSCI.0527-15.2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验