Suppr超能文献

基于序列的可解释混合歌曲推荐

Sequence-Based Explainable Hybrid Song Recommendation.

作者信息

Damak Khalil, Nasraoui Olfa, Sanders William Scott

机构信息

Knowledge Discovery and Web Mining Lab, Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States.

Department of Communication, University of Louisville, Louisville, KY, United States.

出版信息

Front Big Data. 2021 Jul 28;4:693494. doi: 10.3389/fdata.2021.693494. eCollection 2021.

Abstract

Despite advances in deep learning methods for song recommendation, most existing methods do not take advantage of the sequential nature of song content. In addition, there is a lack of methods that can explain their predictions using the content of recommended songs and only a few approaches can handle the item cold start problem. In this work, we propose a hybrid deep learning model that uses collaborative filtering (CF) and deep learning sequence models on the Musical Instrument Digital Interface (MIDI) content of songs to provide accurate recommendations, while also being able to generate a relevant, personalized explanation for each recommended song. Compared to state-of-the-art methods, our validation experiments showed that in addition to generating explainable recommendations, our model stood out among the top performers in terms of recommendation accuracy and the ability to handle the item cold start problem. Moreover, validation shows that our personalized explanations capture properties that are in accordance with the user's preferences.

摘要

尽管在歌曲推荐的深度学习方法方面取得了进展,但大多数现有方法并未利用歌曲内容的顺序特性。此外,缺乏能够使用推荐歌曲的内容来解释其预测的方法,并且只有少数方法可以处理项目冷启动问题。在这项工作中,我们提出了一种混合深度学习模型,该模型在歌曲的乐器数字接口(MIDI)内容上使用协同过滤(CF)和深度学习序列模型来提供准确的推荐,同时还能够为每首推荐歌曲生成相关的个性化解释。与最先进的方法相比,我们的验证实验表明,除了生成可解释的推荐之外,我们的模型在推荐准确性和处理项目冷启动问题的能力方面在表现最佳的模型中脱颖而出。此外,验证表明我们的个性化解释捕捉到了与用户偏好相符的属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b073/8355524/7765df51c867/fdata-04-693494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验