IEEE Trans Neural Syst Rehabil Eng. 2021;29:1614-1623. doi: 10.1109/TNSRE.2021.3105443. Epub 2021 Aug 23.
The sleep spindles in EEG have become one type of biomarker used to assess cognitive abilities and related disorders, and thus their detection is crucial for clinical research. This task, traditionally performed by sleep experts, is time-consuming. Many methods have been proposed to automate this process, yet an increase in performance is still expected. Inspired by the application in image segmentation, we propose a point-wise spindle detection method based on the U-Net framework with an attention module (SpindleU-Net). It maps the sequences of arbitrary-length EEG inputs to those of dense labels of spindle or non-spindle on freely chosen intervals. The attention module that focuses on the salient spindle region allows better performance, and a task-specific loss function is defined to alleviate the problem of imbalanced classification. As a deep learning method, SpindleU-Net outperforms state-of-the-art methods on the widely used benchmark dataset of MASS as well as the DREAMS dataset with a small number of samples. On MASS dataset it achieves average F1 scores of 0.854 and 0.803 according to its consistency with the annotations by two sleep experts respectively. On DREAMS dataset, it shows the average F1 score of 0.739. Its cross-dataset performance is also better compared to other methods, showing the good generalization ability for cross-dataset applications.
脑电图中的睡眠梭形波已成为评估认知能力和相关障碍的生物标志物之一,因此检测睡眠梭形波对于临床研究至关重要。这项任务传统上由睡眠专家完成,非常耗时。已经提出了许多方法来实现自动化,但仍期望提高性能。受图像分割应用的启发,我们提出了一种基于 U-Net 框架的点式纺锤波检测方法,该方法带有一个注意力模块(SpindleU-Net)。它将任意长度的 EEG 输入序列映射到在自由选择的间隔上的纺锤波或非纺锤波的密集标签上。注意力模块关注显著的纺锤波区域,从而提高了性能,并定义了特定于任务的损失函数来减轻分类不平衡的问题。作为一种深度学习方法,SpindleU-Net 在广泛使用的 MASS 基准数据集以及样本数量较少的 DREAMS 数据集上均优于最先进的方法。在 MASS 数据集上,根据其与两位睡眠专家注释的一致性,它的平均 F1 分数分别为 0.854 和 0.803。在 DREAMS 数据集上,它的平均 F1 分数为 0.739。与其他方法相比,它的跨数据集性能也更好,表明其具有跨数据集应用的良好泛化能力。