Suppr超能文献

模拟人类专家纺锤评分的睡眠纺锤波检测算法。

A sleep spindle detection algorithm that emulates human expert spindle scoring.

机构信息

Center for Advanced Research in Sleep Medicine, Centre de Recherche de l'Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.

Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, United States.

出版信息

J Neurosci Methods. 2019 Mar 15;316:3-11. doi: 10.1016/j.jneumeth.2018.08.014. Epub 2018 Aug 11.

Abstract

BACKGROUND

Sleep spindles are a marker of stage 2 NREM sleep that are linked to learning & memory and are altered by many neurological diseases. Although visual inspection of the EEG is considered the gold standard for spindle detection, it is time-consuming, costly and can introduce inter/ra-scorer bias.

NEW METHOD

Our goal was to develop a simple and efficient sleep-spindle detector (algorithm #7, or 'A7') that emulates human scoring. 'A7' runs on a single EEG channel and relies on four parameters: the absolute sigma power, relative sigma power, and correlation/covariance of the sigma band-passed signal to the original EEG signal. To test the performance of the detector, we compared it against a gold standard spindle dataset derived from the consensus of a group of human experts.

RESULTS

The by-event performance of the 'A7' spindle detector was 74% precision, 68% recall (sensitivity), and an F1-score of 0.70. This performance was equivalent to an individual human expert (average F1-score = 0.67).

COMPARISON WITH EXISTING METHOD(S): The F1-score of 'A7' was 0.17 points higher than other spindle detectors tested. Existing detectors have a tendency to find large numbers of false positives compared to human scorers. On a by-subject basis, the spindle density estimates produced by A7 were well correlated with human experts (r = 0.82) compared to the existing detectors (average r = 0.27).

CONCLUSIONS

The 'A7' detector is a sensitive and precise tool designed to emulate human spindle scoring by minimizing the number of 'hidden spindles' detected. We provide an open-source implementation of this detector for further use and testing.

摘要

背景

睡眠纺锤波是 NREM 睡眠阶段 2 的标志物,与学习和记忆有关,并且许多神经疾病都会改变睡眠纺锤波。尽管脑电图的视觉检查被认为是纺锤波检测的金标准,但它既耗时、昂贵,又可能引入评分者间/内偏差。

新方法

我们的目标是开发一种简单有效的睡眠纺锤波检测器(算法 7,或“A7”),它模拟人类评分。“A7”运行在单个脑电图通道上,依赖于四个参数:绝对西格玛功率、相对西格玛功率,以及西格玛带通信号与原始脑电图信号的相关性/协方差。为了测试检测器的性能,我们将其与源自一组人类专家共识的金标准纺锤波数据集进行了比较。

结果

A7 纺锤波检测器的逐事件性能为 74%的精确性、68%的召回率(敏感性)和 0.70 的 F1 评分。这一性能与单个人类专家相当(平均 F1 评分=0.67)。

与现有方法的比较

A7 的 F1 评分比测试的其他纺锤波检测器高 0.17 分。与人类评分者相比,现有的检测器往往会发现大量的假阳性。在逐个体的基础上,A7 产生的纺锤波密度估计与人类专家高度相关(r=0.82),而现有的检测器平均相关度为 r=0.27。

结论

A7 检测器是一种敏感且精确的工具,旨在通过最小化检测到的“隐藏纺锤波”数量来模拟人类的纺锤波评分。我们为这个检测器提供了一个开源实现,以供进一步使用和测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3919/6415669/65c12a38aa30/nihms-1510485-f0001.jpg

相似文献

1
A sleep spindle detection algorithm that emulates human expert spindle scoring.模拟人类专家纺锤评分的睡眠纺锤波检测算法。
J Neurosci Methods. 2019 Mar 15;316:3-11. doi: 10.1016/j.jneumeth.2018.08.014. Epub 2018 Aug 11.
3
Inter-expert and intra-expert reliability in sleep spindle scoring.睡眠纺锤波评分中的专家间和专家内信度。
Clin Neurophysiol. 2015 Aug;126(8):1548-56. doi: 10.1016/j.clinph.2014.10.158. Epub 2014 Nov 10.
4
A personalized semi-automatic sleep spindle detection (PSASD) framework.个性化半自动睡眠纺锤波检测(PSASD)框架。
J Neurosci Methods. 2024 Jul;407:110064. doi: 10.1016/j.jneumeth.2024.110064. Epub 2024 Jan 30.
6
Sleep spindle detection through amplitude-frequency normal modelling.通过幅度-频率正态建模检测睡眠纺锤波。
J Neurosci Methods. 2013 Apr 15;214(2):192-203. doi: 10.1016/j.jneumeth.2013.01.015. Epub 2013 Jan 28.
8
Sleep spindle detection based on non-experts: A validation study.基于非专家的睡眠纺锤波检测:一项验证研究。
PLoS One. 2017 May 11;12(5):e0177437. doi: 10.1371/journal.pone.0177437. eCollection 2017.
9
Infraslow oscillations in human sleep spindle activity.人类睡眠纺锤波活动中的亚慢振荡。
J Neurosci Methods. 2019 Mar 15;316:22-34. doi: 10.1016/j.jneumeth.2018.12.002. Epub 2018 Dec 17.

引用本文的文献

6
Abnormal power and spindle wave activity during sleep in young smokers.年轻吸烟者睡眠期间的异常功率和纺锤波活动。
Front Neurosci. 2025 Feb 11;19:1534758. doi: 10.3389/fnins.2025.1534758. eCollection 2025.

本文引用的文献

1
Sleep spindle density in narcolepsy.发作性睡病中的睡眠纺锤波密度
Sleep Med. 2017 Jun;34:40-49. doi: 10.1016/j.sleep.2017.02.022. Epub 2017 Mar 18.
2
Editorial: Sleep Spindles: Breaking the Methodological Wall.社论:睡眠纺锤波:突破方法学壁垒。
Front Hum Neurosci. 2017 Jan 18;10:672. doi: 10.3389/fnhum.2016.00672. eCollection 2016.
7
Inter-expert and intra-expert reliability in sleep spindle scoring.睡眠纺锤波评分中的专家间和专家内信度。
Clin Neurophysiol. 2015 Aug;126(8):1548-56. doi: 10.1016/j.clinph.2014.10.158. Epub 2014 Nov 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验