Suppr超能文献

基于可见/近红外光谱法的葫芦科作物可溶性固形物和水分含量定量多产品校准模型

Multi-product calibration model for soluble solids and water content quantification in Cucurbitaceae family, using visible/near-infrared spectroscopy.

作者信息

Hadiwijaya Yuda, Putri Ine Elisa, Munawar Agus Arip

机构信息

Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia.

Department of Agricultural Engineering, Faculty of Agriculture, Universitas Syiah Kuala, Indonesia.

出版信息

Heliyon. 2021 Jul 29;7(8):e07677. doi: 10.1016/j.heliyon.2021.e07677. eCollection 2021 Aug.

Abstract

Latest studies on Vis/NIR research mostly focused on particular products. Developing a model for a specific product is costly and laborious. This study utilized visible/near-infrared (Vis/NIR) spectroscopy to evaluate the quality attributes of six products of the Cucurbitaceae family, with a single estimation model, rather than individually. The study made use of six intact products, zucchini, bitter gourd, ridge gourd, melon, chayote, and cucumber. Subsequently, the multi-product models for soluble solids content (SSC) and water content were created using partial least squares regression (PLSR) method. The PLSR modeling produced satisfactory results, the coefficient of determination in calibration set (Rc) was discovered to be 0.95 and 0.92, while the root mean squares error of calibration (RMSEC) was found to be 0.41 and 0.61, for SSC and water content, respectively. These models were able to accurately predict the unknown samples with coefficient of determination in prediction set (Rp) of 0.96 and 0.92, as well as root mean squares error of prediction (RMSEP) of 0.32 and 0.58, while the ratio of prediction to deviation (RPD) was found to be 5.68 and 3.69 for SSC and water content, respectively. This shows Vis/NIR spectroscopy was able to quantify the SSC and water content of six products of Cucurbitaceae family, using a single model.

摘要

近期关于可见/近红外(Vis/NIR)研究的大多集中在特定产品上。为特定产品开发模型成本高昂且费力。本研究利用可见/近红外光谱法,而非单独为葫芦科的六种产品评估质量属性,而是采用单一估计模型。该研究使用了六种完整产品,即西葫芦、苦瓜、丝瓜、甜瓜、佛手瓜和黄瓜。随后,使用偏最小二乘回归(PLSR)方法建立了可溶性固形物含量(SSC)和水分含量的多产品模型。PLSR建模产生了令人满意的结果,校准集的决定系数(Rc)分别为0.95和0.92,而校准均方根误差(RMSEC)分别为0.41和0.61,对应SSC和水分含量。这些模型能够准确预测未知样品,预测集的决定系数(Rp)为0.96和0.92,预测均方根误差(RMSEP)为0.32和0.58,而预测与偏差比(RPD)对于SSC和水分含量分别为5.68和3.69。这表明可见/近红外光谱法能够使用单一模型量化葫芦科六种产品的SSC和水分含量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85f7/8353486/3a65190b2749/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验