Suppr超能文献

脊髓损伤后减轻继发性损伤的治疗靶点和基于纳米材料的治疗方法。

Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury.

机构信息

Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.

Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

出版信息

Nanomedicine (Lond). 2021 Sep;16(22):2013-2028. doi: 10.2217/nnm-2021-0113. Epub 2021 Aug 17.

Abstract

Spinal cord injury (SCI) and the resulting neurological trauma commonly result in complete or incomplete neurological dysfunction and there are few effective treatments for primary SCI. However, the following secondary SCI, including the changes of microvasculature, inflammatory response and oxidative stress around the injury site, may provide promising therapeutic targets. The advances of nanomaterials hold promise for delivering therapeutics to alleviate secondary SCI and promote functional recovery. In this review, we highlight recent achievements of nanomaterial-based therapy, specifically targeting blood-spinal cord barrier disruption, mitigation of the inflammatory response and lightening of oxidative stress after spinal cord injury.

摘要

脊髓损伤 (SCI) 及由此导致的神经创伤通常会导致完全或不完全的神经功能障碍,且针对原发性 SCI 几乎没有有效的治疗方法。然而,以下继发性 SCI,包括损伤部位周围的微血管变化、炎症反应和氧化应激,可能提供有希望的治疗靶点。纳米材料的进展为提供治疗药物以减轻继发性 SCI 和促进功能恢复提供了希望。在这篇综述中,我们强调了基于纳米材料的治疗的最新进展,特别是针对血脊髓屏障破坏、减轻炎症反应和减轻脊髓损伤后的氧化应激。

相似文献

1
Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury.
Nanomedicine (Lond). 2021 Sep;16(22):2013-2028. doi: 10.2217/nnm-2021-0113. Epub 2021 Aug 17.
2
Recent advances in nanotherapeutic strategies for spinal cord injury repair.
Adv Drug Deliv Rev. 2019 Aug;148:38-59. doi: 10.1016/j.addr.2018.12.011. Epub 2018 Dec 22.
3
Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.
J Neurosci. 2017 Nov 29;37(48):11731-11743. doi: 10.1523/JNEUROSCI.1395-17.2017. Epub 2017 Nov 6.
8
10
Sirtuins: Potential Therapeutic Targets for Defense against Oxidative Stress in Spinal Cord Injury.
Oxid Med Cell Longev. 2021 Jun 24;2021:7207692. doi: 10.1155/2021/7207692. eCollection 2021.

引用本文的文献

1
Investigating the role of disulfidoptosis in spinal cord injury and development of a novel diagnostic model.
Acta Orthop Traumatol Turc. 2025 Jun 5;59(4):201-209. doi: 10.5152/j.aott.2025.24248.
2
Bibliometric analysis of nanotechnology in spinal cord injury: current status and emerging frontiers.
Front Pharmacol. 2024 Dec 11;15:1473599. doi: 10.3389/fphar.2024.1473599. eCollection 2024.
3
Protective Effect of Hydrogen-Rich Saline on Spinal Cord Damage in Rats.
Pharmaceuticals (Basel). 2023 Apr 1;16(4):527. doi: 10.3390/ph16040527.
4
Tanshinone-IIA mediated neuroprotection by modulating neuronal pathways.
Naunyn Schmiedebergs Arch Pharmacol. 2023 Aug;396(8):1647-1667. doi: 10.1007/s00210-023-02476-8. Epub 2023 Apr 3.
5
Biomaterials delivery strategies to repair spinal cord injury by modulating macrophage phenotypes.
J Tissue Eng. 2022 Dec 26;13:20417314221143059. doi: 10.1177/20417314221143059. eCollection 2022 Jan-Dec.
6
The immune microenvironment and tissue engineering strategies for spinal cord regeneration.
Front Cell Neurosci. 2022 Aug 4;16:969002. doi: 10.3389/fncel.2022.969002. eCollection 2022.

本文引用的文献

1
Current Insights Into the Pathology of Canine Intervertebral Disc Extrusion-Induced Spinal Cord Injury.
Front Vet Sci. 2020 Oct 27;7:595796. doi: 10.3389/fvets.2020.595796. eCollection 2020.
2
CORM-2-Solid Lipid Nanoparticles Maintain Integrity of Blood-Spinal Cord Barrier After Spinal Cord Injury in Rats.
Mol Neurobiol. 2020 Jun;57(6):2671-2689. doi: 10.1007/s12035-020-01914-5. Epub 2020 Apr 16.
3
MiRNA-125a-5p attenuates blood-spinal cord barrier permeability under hypoxia in vitro.
Biotechnol Lett. 2020 Jan;42(1):25-34. doi: 10.1007/s10529-019-02753-8. Epub 2019 Nov 6.
8
Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment.
J Colloid Interface Sci. 2019 Aug 1;549:50-62. doi: 10.1016/j.jcis.2019.04.047. Epub 2019 Apr 16.
9
Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms.
Front Neurol. 2019 Mar 22;10:282. doi: 10.3389/fneur.2019.00282. eCollection 2019.
10
Dynamic changes in intramedullary pressure 72 hours after spinal cord injury.
Neural Regen Res. 2019 May;14(5):886-895. doi: 10.4103/1673-5374.249237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验