The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, PR China.
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
J Colloid Interface Sci. 2019 Aug 1;549:50-62. doi: 10.1016/j.jcis.2019.04.047. Epub 2019 Apr 16.
Spinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS@PEG (MoS = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS@PEG in vitro and demonstrate that ET-loading MoS@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS@PEG and promising utility of MoS nanomaterial-mediated drug delivery.
脊髓损伤 (SCI) 可导致运动功能障碍和感觉缺失。有证据表明,功能纳米药物可以调节巨噬细胞极化并促进抗炎细胞因子的表达,这在 SCI 免疫治疗中是可行的。二硫化钼 (MoS) 纳米材料作为治疗有效载荷的潜在载体备受关注。在此,我们合成了 MoS@PEG(MoS=二硫化钼,PEG=聚乙二醇)纳米花作为负载依那西普 (ET) 治疗 SCI 的有效载体。我们对 MoS@PEG 的体外药物载药和释放性能进行了表征,并证明负载 ET 的 MoS@PEG 明显抑制了 M1 相关促炎标志物(TNF-α、CD86 和 iNOS)的表达,同时促进了 M2 相关抗炎标志物(Agr1、CD206 和 IL-10)的水平。在体内,SCI 小鼠模型表明,长循环 ET-MoS@PEG 纳米药物在 SCI 后 96 小时内可有效外渗到损伤的脊髓中,并促使巨噬细胞向 M2 型极化。结果,载 ET 的 MoS@PEG 给药可保护运动神经元存活,从而减少中心损伤部位的损伤面积,并显著改善运动功能恢复。这项研究证明了 ET-MoS@PEG 的抗炎和神经保护活性,以及 MoS 纳米材料介导的药物递送的有前途的应用。