Suppr超能文献

二硫化钼纳米花介导的抗炎巨噬细胞调节治疗脊髓损伤。

Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment.

机构信息

The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, PR China.

College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.

出版信息

J Colloid Interface Sci. 2019 Aug 1;549:50-62. doi: 10.1016/j.jcis.2019.04.047. Epub 2019 Apr 16.

Abstract

Spinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS@PEG (MoS = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS@PEG in vitro and demonstrate that ET-loading MoS@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS@PEG and promising utility of MoS nanomaterial-mediated drug delivery.

摘要

脊髓损伤 (SCI) 可导致运动功能障碍和感觉缺失。有证据表明,功能纳米药物可以调节巨噬细胞极化并促进抗炎细胞因子的表达,这在 SCI 免疫治疗中是可行的。二硫化钼 (MoS) 纳米材料作为治疗有效载荷的潜在载体备受关注。在此,我们合成了 MoS@PEG(MoS=二硫化钼,PEG=聚乙二醇)纳米花作为负载依那西普 (ET) 治疗 SCI 的有效载体。我们对 MoS@PEG 的体外药物载药和释放性能进行了表征,并证明负载 ET 的 MoS@PEG 明显抑制了 M1 相关促炎标志物(TNF-α、CD86 和 iNOS)的表达,同时促进了 M2 相关抗炎标志物(Agr1、CD206 和 IL-10)的水平。在体内,SCI 小鼠模型表明,长循环 ET-MoS@PEG 纳米药物在 SCI 后 96 小时内可有效外渗到损伤的脊髓中,并促使巨噬细胞向 M2 型极化。结果,载 ET 的 MoS@PEG 给药可保护运动神经元存活,从而减少中心损伤部位的损伤面积,并显著改善运动功能恢复。这项研究证明了 ET-MoS@PEG 的抗炎和神经保护活性,以及 MoS 纳米材料介导的药物递送的有前途的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验