Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Anal Chem. 2021 Aug 31;93(34):11878-11886. doi: 10.1021/acs.analchem.1c02833. Epub 2021 Aug 17.
Förster resonance energy transfer (FRET) from fluorescent nanoparticles to fluorescent dyes is an attractive approach for bioanalysis in living cells. However, the luminescence of the nanoparticle donor/acceptor has not been effectively used to produce highly efficient FRET because the distance between the energy donor and energy acceptor is often larger than the effective FRET radius (about 10 nm) and the uncontrolled rotational and translational diffusion of luminophores. Here, we develop an aggregation-enhanced energy transfer strategy that can overcome the impedance for effective energy transfer. The functional nanoprobes, named TPP-CDs-FITC, are carbon dots (CDs) functionalized with triphenylphosphine (TPP) and ∼117 fluorescein 5-isothiocyanate (FITC) on the surface. In dispersed solution, the 3.8 nm TPP-CDs-FITC show weak FRET efficiency (15.4%). After TPP-instructed mitochondrial targeting, enhanced FRET efficiency (53.2%) is induced due to the aggregation of TPP-CDs-FITC selectively triggered by adenosine triphosphate (ATP) in the mitochondria. The enhanced FRET efficiency can be attributed to the joint effect of the augment of numbers of FITC acceptors within 10 nm from dispersed 117 to aggregated 5499 and the restricted rotational and translational motions of TPP-CDs donors and FITC acceptors. Ultimately, we successfully observe the fluctuations of ATP levels in the mitochondria using the aggregation-enhanced energy transfer strategy of the TPP-CDs-FITC nanodevice.
荧光纳米粒子到荧光染料的Förster 共振能量转移(FRET)是活细胞中生物分析的一种有吸引力的方法。然而,由于供体/受体纳米粒子的发光没有得到有效利用,因此无法产生高效的 FRET,因为能量供体和能量受体之间的距离通常大于有效 FRET 半径(约 10nm),并且荧光团的旋转和扩散是不可控的。在这里,我们开发了一种聚集增强能量转移策略,可以克服有效能量转移的障碍。这些功能纳米探针,命名为 TPP-CDs-FITC,是在表面功能化的三苯基膦(TPP)和大约 117 个异硫氰酸荧光素 5(FITC)的碳点(CDs)。在分散溶液中,3.8nm 的 TPP-CDs-FITC 显示出较弱的 FRET 效率(15.4%)。在 TPP 指导的线粒体靶向后,由于三磷酸腺苷(ATP)在线粒体中选择性触发 TPP-CDs-FITC 的聚集,增强了 FRET 效率(53.2%)。增强的 FRET 效率归因于分散的 117 个 FITC 受体到聚集的 5499 个 FITC 受体之间距离为 10nm 内的 FITC 受体数量的增加以及 TPP-CDs 供体和 FITC 受体的旋转和平移运动受限的联合作用。最终,我们成功地使用 TPP-CDs-FITC 纳米器件的聚集增强能量转移策略观察到了线粒体中 ATP 水平的波动。