Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest H-1111, Hungary.
Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest H-1117, Hungary.
Anal Chem. 2021 Aug 31;93(34):11660-11668. doi: 10.1021/acs.analchem.1c00579. Epub 2021 Aug 17.
An optimized micro-X-ray fluorescence confocal imaging (μXRF-CI) analytical method has been developed to determine the 2D distribution of elemental composition in small (1-3 mm) biological objects at a 10-20 μm spatial resolution. Plants take up chemical elements from soil, and the vascular system transports them toward shoots. In order to obtain biochemical information related to this biological process, 2D distributions of chemical elements in roots and in hypocotyls of cucumber plants were analyzed by synchrotron radiation based on micro-X-ray fluorescence computer tomography and μXRF-CI techniques. The experiments were carried out at HASYLAB Beamline L of the DORIS-III storage ring in Hamburg, a facility that provided optimal physical conditions for developing and performing these unique analyses: high flux monochromatic synchrotron beam, X-ray optical elements, precision moving stages, and silicon drift detectors. New methodological improvements and experimental studies were carried out for applicability of lyophilized samples and cryo-cooling. Experimental parameters were optimized to maximize the excitation yield of arsenic Kα radiation and improvement of the spatial resolution of the μXRF-CI analytical method.
已经开发出一种优化的微 X 射线荧光共焦成像(μXRF-CI)分析方法,用于以 10-20μm 的空间分辨率确定小(1-3mm)生物物体中元素组成的 2D 分布。植物从土壤中吸收化学元素,血管系统将它们输送到芽。为了获得与这个生物过程相关的生化信息,使用基于微 X 射线荧光计算机断层扫描和 μXRF-CI 技术的同步辐射分析了黄瓜植物根和下胚轴中的化学元素的 2D 分布。实验在汉堡 DORIS-III 储存环 HASYLAB 光束线 L 进行,该设施为开发和进行这些独特分析提供了最佳的物理条件:高通量的单色同步加速器光束、X 射线光学元件、精密移动台和硅漂移探测器。为了使冻干样品和冷冻具有适用性,进行了新的方法改进和实验研究。优化了实验参数以最大程度地提高砷 Kα 辐射的激发产率,并提高 μXRF-CI 分析方法的空间分辨率。