Suppr超能文献

基于子系统含时密度泛函理论的等离子体耦合

Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory.

作者信息

Giannone Giulia, Śmiga Szymon, D'Agostino Stefania, Fabiano Eduardo, Della Sala Fabio

机构信息

Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano (LE) 73010, Italy.

Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy.

出版信息

J Phys Chem A. 2021 Aug 26;125(33):7246-7259. doi: 10.1021/acs.jpca.1c05384. Epub 2021 Aug 17.

Abstract

Many applications in plasmonics are related to the coupling between metallic nanoparticles (MNPs) or between an emitter and a MNP. The theoretical analysis of such a coupling is thus of fundamental importance to analyze the plasmonic behavior and to design new systems. While classical methods neglect quantum and spill-out effects, time-dependent density functional theory (TD-DFT) considers all of them and with Kohn-Sham orbitals delocalized over the whole system. Thus, within TD-DFT, no definite separation of the subsystems (the single MNP or the emitter) and their couplings is directly available. This important feature is obtained here using the subsystem formulation of TD-DFT, which has been originally developed in the context of weakly interacting organic molecules. In subsystem TD-DFT, interacting MNPs are treated independently, thus allowing us to compute the plasmon couplings directly from the subsystem TD-DFT transition densities. We show that subsystem TD-DFT, as well as a simplified version of it in which kinetic contributions are neglected, can reproduce the reference TD-DFT calculations for gap distances greater than about 6 Å or even smaller in the case of hybrid plasmonic systems (i.e., molecules interacting with MNPs). We also show that the subsystem TD-DFT can be also used as a tool to analyze the impact of charge-transfer effects.

摘要

等离激元学中的许多应用都与金属纳米颗粒(MNP)之间或发射体与MNP之间的耦合有关。因此,对这种耦合进行理论分析对于分析等离激元行为和设计新系统至关重要。虽然经典方法忽略了量子和溢出效应,但含时密度泛函理论(TD-DFT)考虑了所有这些效应,并且其Kohn-Sham轨道在整个系统中离域。因此,在TD-DFT中,子系统(单个MNP或发射体)及其耦合并没有直接明确的划分。这里使用TD-DFT的子系统公式获得了这一重要特性,该公式最初是在弱相互作用有机分子的背景下开发的。在子系统TD-DFT中,相互作用的MNP被独立处理,从而使我们能够直接从子系统TD-DFT跃迁密度计算等离激元耦合。我们表明,子系统TD-DFT以及其中忽略了动力学贡献的简化版本,对于大于约6 Å的间隙距离,甚至在混合等离激元系统(即与MNP相互作用的分子)中更小的间隙距离,都可以重现参考TD-DFT计算结果。我们还表明,子系统TD-DFT也可以用作分析电荷转移效应影响的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验