Suppr超能文献

固体硅胶纳米复合电解质纳米孔内的界面电导率增强和孔限域电导率降低行为

Interfacial Conductivity Enhancement and Pore Confinement Conductivity-Lowering Behavior inside the Nanopores of Solid Silica-gel Nanocomposite Electrolytes.

作者信息

Sagara Akihiko, Yabe Hiroki, Chen Xubin, Put Brecht, Hantschel Thomas, Mees Maarten, Arase Hidekazu, Kaneko Yukihiro, Uedono Akira, Vereecken Philippe M

机构信息

Technology Innovation Division, Panasonic Corporation, 1006, Kadoma, Kadoma City, Osaka 571-8508, Japan.

IMEC, Kapeldreef 75, Leuven B-3001, Belgium.

出版信息

ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40543-40551. doi: 10.1021/acsami.1c09246. Epub 2021 Aug 17.

Abstract

Solid nanocomposite electrolytes (nano-SCEs) that exhibit higher ionic conductivity than the individual confined electrolyte were investigated for high-performance solid-state batteries. Understanding the behavior of Li-ion conduction through the pores is important to design ideal nanoporous structures for nano-SCEs, which are composed of an ionic liquid electrolyte (ILE) in a highly porous (∼90%) silica matrix. To establish the relationship between the pore structure of the silica matrix and the ionic conductivity of the solid nanocomposite, the liquid electrolyte fraction was successfully extracted from the nano-SCE to reveal the fragile porous silica matrix. A careful drying using the CO supercritical drying method helps in sustaining the original structure, preventing its collapse due to surface tension. The pore size distribution, Brunauer-Emmett-Teller (BET) surface area, and porosity were characterized using scanning electron microscopy, transmission electron microscopy, and N adsorption/desorption techniques. Our results revealed a wide size distribution of macropores and mesopores in the silica matrix. The pore size increased and the effective surface area decreased with increasing ILE/SiO molar ratio. The interface conductivity enhancement was found to increase with the thickness of the adsorbed (ice-like) bound-water layer on the silica surface, confirming that the strong hydrogen bonding of the adsorbed ionic liquid molecules on the bound-water layer causes the conduction promotion effect in the nano-SCE. In addition, a large number of small pores lead to a severe pore confinement effect that results in a decreased conductivity due to the increasing viscosity of the ILE filling the pores. The conductivity can be improved by realizing a nano-SCE with an optimized pore size to minimize the pore confinement effect.

摘要

为了用于高性能固态电池,人们研究了比单独的受限电解质具有更高离子电导率的固体纳米复合电解质(nano-SCE)。了解锂离子通过孔隙的传导行为对于设计理想的nano-SCE纳米多孔结构很重要,nano-SCE由高度多孔(约90%)的二氧化硅基质中的离子液体电解质(ILE)组成。为了建立二氧化硅基质的孔隙结构与固体纳米复合材料的离子电导率之间的关系,成功地从nano-SCE中提取了液体电解质部分,以揭示脆弱的多孔二氧化硅基质。使用CO超临界干燥方法进行仔细干燥有助于维持原始结构,防止其因表面张力而坍塌。使用扫描电子显微镜、透射电子显微镜和N吸附/脱附技术对孔径分布、布鲁诺尔-埃米特-泰勒(BET)表面积和孔隙率进行了表征。我们的结果揭示了二氧化硅基质中大孔和中孔的尺寸分布很宽。随着ILE/SiO摩尔比的增加,孔径增大,有效表面积减小。发现界面电导率增强随着二氧化硅表面吸附的(冰状)结合水层厚度的增加而增加,这证实了结合水层上吸附的离子液体分子的强氢键导致了nano-SCE中的传导促进效应。此外,大量的小孔导致严重的孔隙限制效应,由于填充孔隙的ILE粘度增加,导致电导率降低。通过实现具有优化孔径的nano-SCE以最小化孔隙限制效应,可以提高电导率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验