Suppr超能文献

硼氢化锂的限域效应:二氧化硅和碳支架的比较

Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds.

作者信息

Ngene Peter, Nale Angeloclaudio, Eggenhuisen Tamara M, Oschatz Martin, Embs Jan Peter, Remhof Arndt, de Jongh Petra E

机构信息

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

Laboratory for Neutron Scattering, Paul Scherrer Institute , CH-5232 Villigen PSI, Switzerland.

出版信息

J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4197-4205. doi: 10.1021/acs.jpcc.6b13094. Epub 2017 Feb 2.

Abstract

LiBH is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid-solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH layer near the pore walls shows profoundly different phase behavior than crystalline LiBH. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides.

摘要

LiBH是一种很有前景的储氢材料,也是锂离子电池的固态电解质。将LiBH限制在多孔支架中可改善其氢解吸动力学、可逆性和锂电导率,但对于支架化学性质的影响却知之甚少。在此,利用准弹性中子散射和量热测量来研究限制在纳米多孔二氧化硅和碳支架中的LiBH的支撑效应。孔径从8 Å变化到20 nm,随着孔径减小,限制效应增强。对于相似的孔径,二氧化硅的限制效应比碳支架更明显。在孔径相似的情况下,二氧化硅中固-固相变温度的变化比碳支架大得多。孔壁附近的LiBH层表现出与结晶LiBH截然不同的相行为。二氧化硅的该层厚度为1.94±0.13 nm,碳支架的为1.41±0.16 nm。准弹性中子散射证实,二氧化硅中具有高氢迁移率的LiBH的比例比碳纳米支架中的大。这些结果清楚地表明,除了孔径外,支架的化学性质在决定纳米受限金属氢化物中的氢迁移率和界面层厚度方面也起着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c123/5338002/af2c628d91ca/jp-2016-13094w_0009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验