Maarouf Fz, Saoiabi S, Azzaoui K, Chrika C, Khalil H, Elkaouni S, Lhimr S, Boubker O, Hammouti B, Jodeh S
Laboratoire de Chimie Appliquée Des Matériaux (LCAM), Faculty of Sciences, Mohammed V University, Rabat, Morocco.
LCAE-URAC18, COST, Department of Chemistry, Faculty of Sciences, Mohamed 1st University, P.O. Box 717, 60000, Oujda, Morocco.
BMC Chem. 2021 Aug 17;15(1):48. doi: 10.1186/s13065-021-00774-x.
Iron phosphate, Fe (HPO)*4HO, is synthesized at ambient temperature, using the inorganic sol-gel method coupled to the microwave route. The experimental conditions for the gelling of Fe (III)-HPO system are previously defined. Potentiometric Time Titration (PTT) and Potentiometric Mass Titration (PMT) investigate the acid-base surface chemistry of obtained phosphate. Variations of surface charge with the contact time, Q a function of T, are examined for time contact varying in the range 0-72 h. The mass suspensions used for this purpose are 0.75, 1.25 and 2.5 g L. The point of zero charge (PZC) and isoelectric point (IEP) are defined using the derivative method examining the variations [Formula: see text], at lower contact time. A shift is observed for PZC and IEP towards low values that are found to be 2.2 ± 0.2 and 1.8 ± 0.1, respectively. In acidic conditions, the surface charge behavior of synthesized phosphate is dominated by [Formula: see text] group which pK = 2.45 ± 0.15. Q against T titration method is performed for synthesized Fe (HPO)*4HO in NaCl electrolytes. The maximal surface charge (Q) is achieved at the low solid suspension. Hence, for m = 0.75 g L, Q value of 50 coulombs is carried at μ = 0.1 and pH around 12, while charge value around 22 coulombs is reached in the pH range: 3-10. The effect of activation time, Q and pH on sodium insertion in iron phosphate, were fully evaluated. To determine the optimal conditions of the studied process, mathematical models are used develop response surfaces in order to characterize the most significant sodium interactions according to the variation of the pH, Q, the contact time and the contents of the synthesized material.
磷酸铁(Fe(HPO₄)·4H₂O)采用无机溶胶 - 凝胶法结合微波路线在室温下合成。先前已确定了Fe(III)-HPO体系胶凝的实验条件。电位时间滴定(PTT)和电位质量滴定(PMT)研究了所得磷酸盐的酸碱表面化学性质。对于接触时间在0 - 72小时范围内变化的情况,研究了表面电荷随接触时间的变化,即Q作为T的函数。用于此目的的质量悬浮液分别为0.75、1.25和2.5 g/L。零电荷点(PZC)和等电点(IEP)使用导数法定义,该方法在较低接触时间下检查变化[公式:见原文]。观察到PZC和IEP向低值偏移,分别为2.2±0.2和1.8±0.1。在酸性条件下,合成磷酸盐的表面电荷行为主要由pK = 2.45±0.15的[公式:见原文]基团主导。对合成的Fe(HPO₄)·4H₂O在NaCl电解质中进行Q对T滴定法。在低固体悬浮液中实现了最大表面电荷(Q)。因此,对于m = 0.75 g/L,在μ = 0.1且pH约为12时,Q值为50库仑,而在pH范围3 - 10时达到约22库仑的电荷值。充分评估了活化时间、Q和pH对磷酸铁中钠插入的影响。为了确定所研究过程的最佳条件,使用数学模型开发响应面,以便根据pH、Q、接触时间和合成材料含量的变化来表征最显著的钠相互作用。