Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, USA.
Microbiome. 2021 Aug 17;9(1):173. doi: 10.1186/s40168-021-01111-z.
The determination of taxon-specific composition of microbiomes by combining high-throughput sequencing of ribosomal genes with phyloinformatic analyses has become routine in microbiology and allied sciences. Systematic biases to this approach based on the demonstrable variability of ribosomal operon copy number per genome were recognized early. The more recent realization that polyploidy is probably the norm, rather than the exception, among microbes from all domains of life, points to an even larger source bias.
We found that the number of 16S or 18S RNA genes per cell, a combined result of the number of RNA gene loci per genome and ploidy level, follows an allometric power law of cell volume with an exponent of 2/3 across 6 orders of magnitude in small subunit copy number per cell and 9 orders of magnitude in cell size. This stands in contrast to cell DNA content, which follows a power law with an exponent of ¾.
In practical terms, that relationship allows for a single, simple correction for variations in both copy number per genome and ploidy level in ribosomal gene analyses of taxa-specific abundance. In biological terms, it points to the uniqueness of ribosomal gene content among microbial properties that scale with size. Video Abstract.
通过高通量测序核糖体基因与系统发育信息学分析相结合来确定微生物组的分类特异性组成,已成为微生物学和相关科学的常规方法。基于每个基因组的核糖体操纵子拷贝数的可变性,这种方法存在系统偏差,这一点很早就得到了认识。最近人们意识到,多倍体可能是所有生命领域微生物的常态,而不是例外,这指出了更大的来源偏差。
我们发现,每个细胞的 16S 或 18S RNA 基因数量,是每个基因组的 RNA 基因座数量和倍性水平的综合结果,遵循细胞体积的异速幂律,在细胞中小亚基拷贝数的 6 个数量级和细胞大小的 9 个数量级范围内,指数为 2/3。这与细胞 DNA 含量形成对比,后者遵循指数为 ¾ 的幂律。
实际上,这种关系允许对核糖体基因分析中每个基因组的拷贝数和倍性水平的变化进行单一、简单的校正,以确定分类特异性丰度。从生物学角度来看,它指出了核糖体基因含量在与大小成比例的微生物特性中的独特性。视频摘要。