Suppr超能文献

通过转录组和基因互作组数据的综合分析,扩展生物燃料植物麻疯树中生物油脂合成途径的挖掘。

Extended mining of the oil biosynthesis pathway in biofuel plant Jatropha curcas by combined analysis of transcriptome and gene interactome data.

机构信息

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.

Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China.

出版信息

BMC Bioinformatics. 2021 Aug 18;22(Suppl 6):409. doi: 10.1186/s12859-021-04319-w.

Abstract

BACKGROUND

Jatropha curcas L. is an important non-edible oilseed crop with a promising future in biodiesel production. However, little is known about the molecular biology of oil biosynthesis in this plant when compared with other established oilseed crops, resulting in the absence of agronomically improved varieties of Jatropha. To extensively discover the potentially novel genes and pathways associated with the oil biosynthesis in J. curcas, new strategy other than homology alignment is on the demand.

RESULTS

In this study, we proposed a multi-step computational framework that integrates transcriptome and gene interactome data to predict functional pathways in non-model organisms in an extended process, and applied it to study oil biosynthesis pathway in J. curcas. Using homologous mapping against Arabidopsis and transcriptome profile analysis, we first constructed protein-protein interaction (PPI) and co-expression networks in J. curcas. Then, using the homologs of Arabidopsis oil-biosynthesis-related genes as seeds, we respectively applied two algorithm models, random walk with restart (RWR) in PPI network and negative binomial distribution (NBD) in co-expression network, to further extend oil-biosynthesis-related pathways and genes in J. curcas. At last, using k-nearest neighbors (KNN) algorithm, the predicted genes were further classified into different sub-pathways according to their possible functional roles.

CONCLUSIONS

Our method exhibited a highly efficient way of mining the extended oil biosynthesis pathway of J. curcas. Overall, 27 novel oil-biosynthesis-related gene candidates were predicted and further assigned to 5 sub-pathways. These findings can help better understanding of the oil biosynthesis pathway of J. curcas, as well as paving the way for the following J. curcas breeding application.

摘要

背景

麻疯树是一种重要的非食用油料作物,在生物柴油生产方面具有广阔的前景。然而,与其他已建立的油料作物相比,人们对这种植物的油脂生物合成的分子生物学知之甚少,导致缺乏经过农艺改良的麻疯树品种。为了广泛发现与麻疯树油脂生物合成相关的潜在新基因和途径,除了同源性比对之外,还需要一种新的策略。

结果

在本研究中,我们提出了一种多步骤的计算框架,该框架整合了转录组和基因互作组数据,以在扩展的过程中预测非模式生物中的功能途径,并将其应用于研究麻疯树的油脂生物合成途径。通过与拟南芥的同源映射和转录组谱分析,我们首先构建了麻疯树的蛋白质-蛋白质互作(PPI)和共表达网络。然后,利用拟南芥油脂生物合成相关基因的同源物作为种子,我们分别应用了两种算法模型,即 PPI 网络中的随机游走重启动(RWR)和共表达网络中的负二项式分布(NBD),进一步扩展了麻疯树油脂生物合成相关途径和基因。最后,利用 k-最近邻(KNN)算法,根据预测基因的可能功能作用,将其进一步分类到不同的亚途径中。

结论

我们的方法展示了一种高效挖掘麻疯树油脂生物合成途径的方法。总体上,预测到了 27 个新的油脂生物合成相关基因候选物,并进一步将其分配到 5 个亚途径中。这些发现有助于更好地理解麻疯树的油脂生物合成途径,并为随后的麻疯树育种应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267a/8375076/8a2abe24247f/12859_2021_4319_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验