Suppr超能文献

Phase distribution including a bubblelike region in supercritical fluid.

作者信息

Xu Jinliang, Wang Yan, Ma Xiaojing

机构信息

Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, 102206, China.

Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing, 102206, China.

出版信息

Phys Rev E. 2021 Jul;104(1-1):014142. doi: 10.1103/PhysRevE.104.014142.

Abstract

Pseudoboiling in supercritical fluid (SF) has been paid great attention in recent years. Available works mainly focus on thermodynamics analysis. Fewer studies were reported on the spatial time phase distribution. Here, SF is investigated in a multiphase fluid framework using molecular dynamics (MD) simulations. A simulation box contains 10 976 argon atoms, with periodic boundary conditions applied on all the box surfaces. Pressure and temperature are well controlled. Based on MD simulation results, an onset pseudoboiling temperature T^{-} and a termination pseudoboiling temperature T^{+} are defined using the neighboring molecules method, the radial distribution function method, and the two-body excess entropy method. The two transition temperatures divide the whole phase diagram into three regimes of liquidlike, two-phase-like (TPL), and gaslike, and the MD determined T^{-} and T^{+} well matched the thermodynamics-determined values. In the TPL regime, nanovoids are observed to have two distinct characteristics: (1) Particles are sparsely distributed to have gas density inside the void, but are densely populated to have liquid density outside the void. (2) Voids have a curved interface. These characteristics are very similar to bubble characteristics in subcritical pressure. Hence, voids in the supercritical state are called "bubblelike" in this paper. Nonlinear dynamics demonstrates chaotic behavior in the TPL regime, similar to the two-phase regime in the subcritical domain. The above findings give strong evidence that SF in the TPL regime consists of a mixture of bubblelike voids and surrounding liquids. Our work highlights the multiphase feature of a SF, hence, the well-established multiphase theory in subcritical pressures can be introduced to handle the complex SF.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验