Nizette Michel, Vladimirov Andrei G
Département de Physique, Faculté des Sciences, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Bruxelles, Belgium.
Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany.
Phys Rev E. 2021 Jul;104(1-1):014215. doi: 10.1103/PhysRevE.104.014215.
Using an asymptotic technique, we develop a generalized version of the class-B Haus partial differential equation mode-locking model that accounts for both the slow gain response to the averaged value of the field intensity and the fast gain dynamics on the scale comparable to the pulse duration. We show that unlike the conventional class-B Haus mode-locked model, our model is able to describe not only Q-switched instability of the fundamental mode-locked regime but also the leading edge instability leading to harmonic mode-locked regimes with the increase of the pump power.
通过一种渐近技术,我们开发了B类豪斯偏微分方程锁模模型的广义版本,该模型既考虑了增益对场强平均值的缓慢响应,也考虑了在与脉冲持续时间相当的尺度上的快速增益动力学。我们表明,与传统的B类豪斯锁模模型不同,我们的模型不仅能够描述基本锁模 regime的调Q不稳定性,还能够描述随着泵浦功率增加导致谐波锁模 regime的前沿不稳定性。