Suppr超能文献

大气水汽和土壤水分共同决定了青藏高原草原 CO2 通量和蒸散的时空变化。

Atmospheric water vapor and soil moisture jointly determine the spatiotemporal variations of CO fluxes and evapotranspiration across the Qinghai-Tibetan Plateau grasslands.

机构信息

College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sci Total Environ. 2021 Oct 15;791:148379. doi: 10.1016/j.scitotenv.2021.148379. Epub 2021 Jun 9.

Abstract

Alpine grasslands play important functions in mitigating climate change and regulating water resources. However, the spatiotemporal variability of their carbon and water budgets remains unquantified. Here, 47 site-year observations of CO and water vapor fluxes (ET) are analyzed at sites situated along a hydrothermal gradient across the Qinghai-Tibetan Plateau, including an alpine wetland (wettest), an alpine shrub (coldest), an alpine meadow, an alpine meadow-steppe, and an alpine steppe (driest and warmest). The results show that the benchmarks for annual net ecosystem exchange (NEE) are -79.3, -77.8, -66.7, 20.2, and 100.9 g C m year at the meadow, shrub, meadow-steppe, steppe, and wetland, respectively. The peak daily NEE normalized by peak leaf area index converges to 0.93 g C m d at the 5 sites. Except in the wetland (722.8 mm), the benchmarks of annual ET fluctuate from 511.0 mm in the steppe to 589.2 mm in the meadow. Boosted regression trees-based analysis suggests that the enhanced vegetation index (EVI) and net radiation (R) determine the variations of growing season monthly CO fluxes and ET, respectively, although the effect is to some extent site-specific. Inter-annual variability in NEE, ecosystem respiration (RES), and ET are tightly (R > 0.60) related to the inter-growing season NEE, RES, and ET, respectively. Both annual RES and annual NEE are significantly constrained by annual gross primary productivity (GPP), with 85% of the per-unit GPP contributing to RES (R = 0.84) and 15% to NEE (R = 0.12). Annual GPP significantly correlates with annual ET alone at the drier sites of the meadow-steppe and the steppe, suggesting the coupling of carbon and water is moisture-dependent in alpine grasslands. Over half of the inter-annual spatial variability in GPP, RES, NEE, and ET is explained by EVI, atmospheric water vapor, topsoil water content, and bulk surface resistance (r), respectively. Because the spatial variations of EVI and r are strongly regulated by atmospheric water vapor (R = 0.48) and topsoil water content (R = 0.54), respectively, we conclude that atmospheric water vapor and topsoil water content, rather than the expected air/soil temperatures, drive the spatiotemporal variations in CO fluxes and ET across temperature-limited grasslands. These findings are critical for improving predictions of the carbon sequestration and water holding capacity of alpine grasslands.

摘要

高山草原在减缓气候变化和调节水资源方面发挥着重要作用。然而,其碳和水预算的时空变化仍未得到量化。本研究分析了青藏高原沿水热梯度的 47 个站点-年的 CO 和水汽通量(ET)观测数据,包括一个高山湿地(最湿润)、一个高山灌丛(最冷)、一个高山草甸、一个高山草甸-草原和一个高山草原(最干燥和最温暖)。结果表明,草甸、灌丛、草甸-草原、草原和湿地的年净生态系统交换(NEE)基准值分别为-79.3、-77.8、-66.7、20.2 和 100.9 g C m 年。5 个站点的归一化到峰值叶面积指数的峰值日 NEE 收敛于 0.93 g C m d。除了湿地(722.8 mm)外,年 ET 的基准值从草原的 511.0 mm 波动到草甸的 589.2 mm。基于增强回归树的分析表明,增强植被指数(EVI)和净辐射(R)分别决定了生长季每月 CO 通量和 ET 的变化,尽管这种影响在某种程度上是特定于站点的。NEE、生态系统呼吸(RES)和 ET 的年际变异性与生长季 NEE、RES 和 ET 的年际变异性密切相关(R > 0.60)。年度 RES 和年度 NEE 均受到年度总初级生产力(GPP)的显著限制,GPP 的每单位贡献了 85%的 RES(R = 0.84)和 15%的 NEE(R = 0.12)。在高山草甸草原和草原较干燥的站点,年度 GPP 与年度 ET 显著相关,这表明高山草甸的碳水耦合依赖于水分。GPP、RES、NEE 和 ET 的年际空间变异性的一半以上分别由 EVI、大气水汽、表土含水量和比表面阻力(r)解释。由于 EVI 和 r 的空间变化受到大气水汽(R = 0.48)和表土含水量(R = 0.54)的强烈调节,因此我们得出结论,大气水汽和表土含水量而不是预期的空气/土壤温度,驱动着温度限制草地的 CO 通量和 ET 的时空变化。这些发现对于提高高山草原碳固存和水分保持能力的预测至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验