Suppr超能文献

前列腺特异性膜抗原(PSMA)配体摄取可作为原发性前列腺癌的一种新型生物标志物,用于预测根治性前列腺切除术后的预后。

PSMA-ligand uptake can serve as a novel biomarker in primary prostate cancer to predict outcome after radical prostatectomy.

作者信息

Wang Hui, Amiel Thomas, Würnschimmel Christoph, Langbein Thomas, Steiger Katja, Rauscher Isabel, Horn Thomas, Maurer Tobias, Weber Wolfgang, Wester Hans-Juergen, Knorr Karina, Eiber Matthias

机构信息

Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany.

Department of Urology, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany.

出版信息

EJNMMI Res. 2021 Aug 21;11(1):76. doi: 10.1186/s13550-021-00818-2.

Abstract

BACKGROUND

The prostate-specific membrane antigen (PSMA) is a relevant target in prostate cancer, and immunohistochemistry studies showed associations with outcome. PSMA-ligand positron emission tomography (PET) is increasingly used for primary prostate cancer staging, and the molecular imaging TNM classification (miTNM) standardizes its reporting. We aimed to investigate the potential of PET-imaging to serve as a noninvasive imaging biomarker to predict disease outcome in primary prostate cancer after radical prostatectomy (RP).

METHODS

In this retrospective analysis, 186 primary prostate cancer patients treated with RP who had undergone a Ga-PSMA-11 PET up to three months prior to the surgery were included. Maximum standardized uptake value (SUV), SUV, tumor volume (TV) and total lesion (TL) were collected from PET-imaging. Moreover, clinicopathological information, including age, serum prostate-specific antigen (PSA) level, and pathological characteristics, was assessed for disease outcome prediction. A stage group system for PET-imaging findings based on the miTNM framework was developed.

RESULTS

At a median follow-up after RP of 38 months (interquartile range (IQR) 22-53), biochemical recurrence (BCR) was observed in 58 patients during the follow-up period. A significant association between a positive surgical margin and miN status (miN1 vs. miN0, odds ratio (OR): 5.428, p = 0.004) was detected. miT status (miT ≥ 3a vs. miT < 3, OR: 2.696, p = 0.003) was identified as an independent predictor for Gleason score (GS) ≥ 8. Multivariate Cox regression analysis indicated that PSA level (hazard ratio (HR): 1.024, p = 0.014), advanced GS (GS ≥ 8 vs. GS < 8, HR: 3.253, p < 0.001) and miT status (miT ≥ 3a vs. miT < 3, HR: 1.941, p = 0.035) were independent predictors for BCR. For stage I disease as determined by PET-imaging, a shorter BCR-free survival was observed in the patients with higher SUV (IA vs. IB stage, log-rank, p = 0.022).

CONCLUSION

Preoperative miTNM classification from Ga-PSMA-11 PET correlates with postoperative GS, surgical margin status and time to BCR. The association between miTNM staging and outcome proposes Ga-PSMA-11 PET as a novel non-invasive imaging biomarker and potentially serves for ancillary pre-treatment stratification.

摘要

背景

前列腺特异性膜抗原(PSMA)是前列腺癌的一个相关靶点,免疫组化研究显示其与预后相关。PSMA配体正电子发射断层扫描(PET)越来越多地用于原发性前列腺癌分期,分子影像TNM分类(miTNM)对其报告进行了标准化。我们旨在研究PET成像作为一种非侵入性成像生物标志物预测根治性前列腺切除术(RP)后原发性前列腺癌疾病预后的潜力。

方法

在这项回顾性分析中,纳入了186例接受RP治疗的原发性前列腺癌患者,这些患者在手术前三个月内接受了Ga-PSMA-11 PET检查。从PET成像中收集最大标准化摄取值(SUV)、SUV、肿瘤体积(TV)和总病灶(TL)。此外,评估临床病理信息,包括年龄、血清前列腺特异性抗原(PSA)水平和病理特征,以预测疾病预后。基于miTNM框架开发了PET成像结果的分期组系统。

结果

RP术后中位随访38个月(四分位间距(IQR)22 - 53),随访期间58例患者出现生化复发(BCR)。检测到手术切缘阳性与miN状态之间存在显著关联(miN1 vs. miN0,比值比(OR):5.428,p = 0.004)。miT状态(miT≥3a vs. miT < 3,OR:2.696,p = 0.003)被确定为 Gleason评分(GS)≥8的独立预测因子。多因素Cox回归分析表明,PSA水平(风险比(HR):1.024,p = 0.014)、高级别GS(GS≥8 vs. GS < 8,HR:3.253,p < 0.001)和miT状态(miT≥3a vs. miT < 3,HR:1.941,p = 0.035)是BCR的独立预测因子。对于PET成像确定的I期疾病,SUV较高的患者无BCR生存期较短(IA期 vs. IB期,对数秩检验,p = 0.022)。

结论

术前基于Ga-PSMA-11 PET的miTNM分类与术后GS、手术切缘状态和BCR时间相关。miTNM分期与预后之间的关联表明Ga-PSMA-11 PET是一种新型非侵入性成像生物标志物,可能有助于辅助治疗前分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86ce/8380207/c368ce579125/13550_2021_818_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验