Li Tingshuai, Xia Jiaojiao, Chen Qiru, Xu Ke, Gu Yang, Liu Qian, Luo Yonglan, Guo Haoran, Traversa Enrico
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 Sichuan, China.
Institute for Advanced Study, Chengdu University, Chengdu, 610106 Sichuan, China.
ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40724-40730. doi: 10.1021/acsami.1c12279. Epub 2021 Aug 23.
Electrocatalytic nitrogen reduction to ammonia has attracted increasing attention as it is more energy-saving and eco-friendly. For this endeavor, the development of high-efficiency electrocatalysts with excellent selectivity and stability is indispensable to break up the stable covalent triple bond in nitrogen. In this study, we report monodisperse Cu clusters loaded on defective ZrO nanofibers for nitrogen reduction under mild conditions. Such an electrocatalyst achieves an NH yield rate of 12.13 μg h mg and an optimal Faradaic efficiency of 13.4% at -0.6 V versus the reversible hydrogen electrode in 0.1 M NaSO. Density functional theory calculations reveal that the N molecule was reduced to NH at the Cu active site with an ideal overpotential. Meanwhile, the interaction between bonding and antibonding of the Cu-N bond promotes activation of N and maintains a low desorption barrier.
电催化氮还原制氨因其更节能和环保而受到越来越多的关注。对于这项工作,开发具有优异选择性和稳定性的高效电催化剂对于打破氮中稳定的共价三键是必不可少的。在本研究中,我们报道了负载在缺陷ZrO纳米纤维上的单分散Cu簇用于在温和条件下进行氮还原。这种电催化剂在0.1 M NaSO中相对于可逆氢电极在-0.6 V时实现了12.13 μg h mg的NH产率和13.4%的最佳法拉第效率。密度泛函理论计算表明,N分子在Cu活性位点以理想的过电位被还原为NH。同时,Cu-N键的成键和反键之间的相互作用促进了N的活化并保持了较低的解吸势垒。