Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
J Phys Chem B. 2021 Sep 2;125(34):9895-9909. doi: 10.1021/acs.jpcb.1c05802. Epub 2021 Aug 23.
The dissipative particle dynamics (DPD) mesoscopic method is used to investigate the self-assembly of rhamnolipid congeners and their aggregation behaviors with paraffins including nonane and pentadecane. The coarse-grained force field is parameterized by combining molecular dynamics (MD) simulations, COSMOtherm calculations, and available experimental data. This model reproduces the vesicular formation of α-l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10) reported by all-atom MD simulations. The vesicle composed of Rha-C10-C10 is found to be most stable at a surfactant concentration of 100-146 mM based on asphericity analysis. The architecture of rhamnolipid congeners affects the morphology of their aggregates. Di-rhamno-di-lipidic dRha-C16-C16 forms vesicles with a thicker unilamellar layer of 3.2 nm. Rha-C16-C16 forms vesicles at a lower concentration of 70 mM, but the enclosed water space collapses when the surfactant concentration increases. dRha-C10-C10 forms wormlike micelles, which agglomerate into a torus and interconnected network at higher concentrations. In the presence of alkane molecules, dRha-C10-C10 maintains its wormlike micellar morphology with alkane molecules wrapped inside the aggregates. For Rha-C10-C10, Rha-C16-C16, and dRha-C16-C16, nonane molecules are distributed in the hydrophobic subdomain formed by rhamnolipid molecules. Spherical vesicles are formed at a surfactant concentration of 50 mM and then develop into ellipsoidal vesicles when the concentration increases to 125 mM. When mixed with pentadecane, the alkane molecules are aggregated and surrounded by surfactants forming a core-shell structure at a low surfactant concentration of 20 mM. At higher alkane and surfactant concentrations, the morphologies develop into disk micelles, wormlike micelles, and vesicles, with pentadecane molecules being distributed and packed with rhamnolipids. The obtained simulation results suggest that these biosurfactants have potential as environmental remediation agents.
采用耗散粒子动力学(DPD)介观方法研究了鼠李糖脂同系物的自组装及其与正构烷烃(包括壬烷和十五烷)的聚集行为。通过将分子动力学(MD)模拟、COSMOtherm 计算和可用的实验数据相结合,对粗粒化力场进行参数化。该模型再现了全原子 MD 模拟报告的α-L-鼠李吡喃糖基-β-羟癸酰基-β-羟癸酸酯(Rha-C10-C10)的囊泡形成。基于各向异性分析,发现由 Rha-C10-C10 组成的囊泡在表面活性剂浓度为 100-146mM 时最稳定。鼠李糖脂同系物的结构影响其聚集形态。二鼠李糖二脂酰二鼠李糖脂(dRha-C16-C16)形成具有 3.2nm 厚的单分子层的囊泡。Rha-C16-C16 在较低浓度(70mM)下形成囊泡,但当表面活性剂浓度增加时,封闭的水空间坍塌。dRha-C10-C10 形成蠕虫状胶束,在较高浓度下聚集形成环和相互连接的网络。在烷烃分子存在的情况下,dRha-C10-C10 保持其蠕虫状胶束形态,烷烃分子包裹在聚集物内部。对于 Rha-C10-C10、Rha-C16-C16 和 dRha-C16-C16,壬烷分子分布在由鼠李糖脂分子形成的疏水性亚域中。在表面活性剂浓度为 50mM 时形成球形囊泡,当浓度增加到 125mM 时,囊泡发展成椭圆形。当与十五烷混合时,在低表面活性剂浓度(20mM)下,烷烃分子聚集并被表面活性剂包围,形成核壳结构。在较高的烷烃和表面活性剂浓度下,形态发展成盘状胶束、蠕虫状胶束和囊泡,十五烷分子分布并与鼠李糖脂包装。所得模拟结果表明,这些生物表面活性剂具有作为环境修复剂的潜力。