Suppr超能文献

用于在线时间序列预测的随机傅里叶特征核递归最大混合相关熵算法

Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction.

作者信息

Xu Xinghan, Ren Weijie

机构信息

Department of Environmental Engineering, Kyoto University, Kyoto 615-8540, Japan.

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

ISA Trans. 2022 Jul;126:370-376. doi: 10.1016/j.isatra.2021.08.014. Epub 2021 Aug 13.

Abstract

In the paper, a novel kernel recursive least-squares (KRLS) algorithm named random Fourier feature kernel recursive maximum mixture correntropy (RFF-RMMC) algorithm is proposed, which improves the prediction efficiency and robustness of the KRLS algorithm. Random Fourier feature (RFF) method as well as maximum mixture correntropy criterion (MMCC) are combined and applied into KRLS algorithm afterwards. Using RFF to approximate the kernel function in KRLS with a fixed cost can greatly reduce the computational complexity and simultaneously improve the prediction efficiency. In addition, the MMCC maintains the robustness like the maximum correntropy criterion (MCC). More importantly, it can enhance the accuracy of the similarity measurement between predicted and true values by more flexible parameter settings, and then make up for the loss of prediction accuracy caused by RFF to a certain extent. The performance of the RFF-RMMC algorithm for online time series prediction is verified by the simulation results based on three datasets.

摘要

本文提出了一种名为随机傅里叶特征核递归最大混合相关熵(RFF-RMMC)算法的新型核递归最小二乘(KRLS)算法,该算法提高了KRLS算法的预测效率和鲁棒性。随后将随机傅里叶特征(RFF)方法以及最大混合相关熵准则(MMCC)相结合并应用于KRLS算法。使用RFF以固定成本逼近KRLS中的核函数可以大大降低计算复杂度,同时提高预测效率。此外,MMCC与最大相关熵准则(MCC)一样保持鲁棒性。更重要的是,它可以通过更灵活的参数设置提高预测值与真实值之间相似性度量的准确性,进而在一定程度上弥补RFF导致的预测精度损失。基于三个数据集的仿真结果验证了RFF-RMMC算法用于在线时间序列预测的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验