Suppr超能文献

探索神经元自动重建中的高度可靠子结构。

Exploring highly reliable substructures in auto-reconstructions of a neuron.

作者信息

He Yishan, Huang Jiajin, Wu Gaowei, Yang Jian

机构信息

Faculty of Information Technology, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.

Beijing International Collaboration Base On Brain Informatics and Wisdom Services, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.

出版信息

Brain Inform. 2021 Aug 24;8(1):17. doi: 10.1186/s40708-021-00137-1.

Abstract

The digital reconstruction of a neuron is the most direct and effective way to investigate its morphology. Many automatic neuron tracing methods have been proposed, but without manual check it is difficult to know whether a reconstruction or which substructure in a reconstruction is accurate. For a neuron's reconstructions generated by multiple automatic tracing methods with different principles or models, their common substructures are highly reliable and named individual motifs. In this work, we propose a Vaa3D-based method called Lamotif to explore individual motifs in automatic reconstructions of a neuron. Lamotif utilizes the local alignment algorithm in BlastNeuron to extract local alignment pairs between a specified objective reconstruction and multiple reference reconstructions, and combines these pairs to generate individual motifs on the objective reconstruction. The proposed Lamotif is evaluated on reconstructions of 163 multiple species neurons, which are generated by four state-of-the-art tracing methods. Experimental results show that individual motifs are almost on corresponding gold standard reconstructions and have much higher precision rate than objective reconstructions themselves. Furthermore, an objective reconstruction is mostly quite accurate if its individual motifs have high recall rate. Individual motifs contain common geometry substructures in multiple reconstructions, and can be used to select some accurate substructures from a reconstruction or some accurate reconstructions from automatic reconstruction dataset of different neurons.

摘要

神经元的数字重建是研究其形态的最直接有效的方法。已经提出了许多自动神经元追踪方法,但如果没有人工检查,很难知道一个重建或重建中的哪个子结构是准确的。对于由多种具有不同原理或模型的自动追踪方法生成的神经元重建,它们的共同子结构是高度可靠的,并被命名为个体基序。在这项工作中,我们提出了一种基于Vaa3D的方法,称为Lamotif,用于探索神经元自动重建中的个体基序。Lamotif利用BlastNeuron中的局部比对算法,提取指定目标重建与多个参考重建之间的局部比对对,并将这些比对对组合起来,在目标重建上生成个体基序。所提出的Lamotif在由四种最先进的追踪方法生成的163个多物种神经元的重建上进行了评估。实验结果表明,个体基序几乎都在相应的金标准重建上,并且具有比目标重建本身高得多的精确率。此外,如果一个目标重建的个体基序具有高召回率,那么它大多是相当准确的。个体基序包含多个重建中的共同几何子结构,可用于从一个重建中选择一些准确的子结构,或从不同神经元的自动重建数据集中选择一些准确的重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验