Suppr超能文献

M-AMST:一种基于均值漂移和自适应最小生成树的自动三维神经元追踪方法。

M-AMST: an automatic 3D neuron tracing method based on mean shift and adapted minimum spanning tree.

作者信息

Wan Zhijiang, He Yishan, Hao Ming, Yang Jian, Zhong Ning

机构信息

Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China.

Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan.

出版信息

BMC Bioinformatics. 2017 Mar 29;18(1):197. doi: 10.1186/s12859-017-1597-9.

Abstract

BACKGROUND

Understanding the working mechanism of the brain is one of the grandest challenges for modern science. Toward this end, the BigNeuron project was launched to gather a worldwide community to establish a big data resource and a set of the state-of-the-art of single neuron reconstruction algorithms. Many groups contributed their own algorithms for the project, including our mean shift and minimum spanning tree (M-MST). Although M-MST is intuitive and easy to implement, the MST just considers spatial information of single neuron and ignores the shape information, which might lead to less precise connections between some neuron segments. In this paper, we propose an improved algorithm, namely M-AMST, in which a rotating sphere model based on coordinate transformation is used to improve the weight calculation method in M-MST.

RESULTS

Two experiments are designed to illustrate the effect of adapted minimum spanning tree algorithm and the adoptability of M-AMST in reconstructing variety of neuron image datasets respectively. In the experiment 1, taking the reconstruction of APP2 as reference, we produce the four difference scores (entire structure average (ESA), different structure average (DSA), percentage of different structure (PDS) and max distance of neurons' nodes (MDNN)) by comparing the neuron reconstruction of the APP2 and the other 5 competing algorithm. The result shows that M-AMST gets lower difference scores than M-MST in ESA, PDS and MDNN. Meanwhile, M-AMST is better than N-MST in ESA and MDNN. It indicates that utilizing the adapted minimum spanning tree algorithm which took the shape information of neuron into account can achieve better neuron reconstructions. In the experiment 2, 7 neuron image datasets are reconstructed and the four difference scores are calculated by comparing the gold standard reconstruction and the reconstructions produced by 6 competing algorithms. Comparing the four difference scores of M-AMST and the other 5 algorithm, we can conclude that M-AMST is able to achieve the best difference score in 3 datasets and get the second-best difference score in the other 2 datasets.

CONCLUSIONS

We develop a pathway extraction method using a rotating sphere model based on coordinate transformation to improve the weight calculation approach in MST. The experimental results show that M-AMST utilizes the adapted minimum spanning tree algorithm which takes the shape information of neuron into account can achieve better neuron reconstructions. Moreover, M-AMST is able to get good neuron reconstruction in variety of image datasets.

摘要

背景

理解大脑的工作机制是现代科学面临的最重大挑战之一。为此,启动了BigNeuron项目,以汇聚全球科研团队,建立一个大数据资源库和一套最先进的单神经元重建算法。许多团队为该项目贡献了各自的算法,包括我们的均值漂移和最小生成树算法(M-MST)。虽然M-MST直观且易于实现,但最小生成树算法仅考虑了单个神经元的空间信息,而忽略了形状信息,这可能导致一些神经元段之间的连接不够精确。在本文中,我们提出了一种改进算法,即M-AMST,其中基于坐标变换的旋转球体模型用于改进M-MST中的权重计算方法。

结果

设计了两个实验,分别说明自适应最小生成树算法的效果以及M-AMST在重建各种神经元图像数据集方面的适用性。在实验1中,以APP2的重建为参考,通过比较APP2与其他5种竞争算法的神经元重建结果,我们得出了四个差异分数(整体结构平均值(ESA)、不同结构平均值(DSA)、不同结构百分比(PDS)和神经元节点的最大距离(MDNN))。结果表明,在ESA、PDS和MDNN方面,M-AMST的差异分数低于M-MST。同时,在ESA和MDNN方面,M-AMST优于N-MST。这表明采用考虑了神经元形状信息的自适应最小生成树算法能够实现更好的神经元重建。在实验2中,对7个神经元图像数据集进行了重建,并通过比较金标准重建结果与6种竞争算法生成的重建结果计算了四个差异分数。比较M-AMST与其他5种算法的四个差异分数,我们可以得出结论,M-AMST在3个数据集中能够获得最佳差异分数,在另外2个数据集中获得第二佳差异分数。

结论

我们开发了一种基于坐标变换的旋转球体模型的路径提取方法,以改进最小生成树算法中的权重计算方法。实验结果表明,M-AMST采用考虑了神经元形状信息的自适应最小生成树算法能够实现更好的神经元重建。此外,M-AMST能够在各种图像数据集中获得良好的神经元重建效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c3/5372346/0f52b8aeff59/12859_2017_1597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验