Departamento de Ciencias Básicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.
Centro de Estudios Científicos, Valdivia 5110466, Chile.
Neural Plast. 2021 Aug 11;2021:9930962. doi: 10.1155/2021/9930962. eCollection 2021.
Increasing attention has been drawn to the role that intracellular calcium stores play in neuronal function. Ryr3 is an intracellular calcium channel that contributes to hippocampal long-term potentiation, dendritic spine function, and higher cognitive processes. Interestingly, stimuli that increase neuronal activity upregulate the transcriptional activity of Ryr3 and augment DNA methylation in its proximal promoter. However, if these observations are valid for complex behavioral tasks such as learning and memory remains being evaluated. Relative expression analysis revealed that spatial learning increased the hippocampal levels of Ryr3, whereas mice trained using a visible platform that resulted in no spatial association showed reduced expression. Interestingly, we also observed that specific DNA modifications accompanied these opposite transcriptional changes. Increased DNA methylation was observed in hippocampal samples from spatially trained mice, and increased DNA hydroxymethylation was found in samples from mice trained using a visible platform. Both DNA modifications were not altered in control regions, suggesting that these changes are not generalized, but rather specific modifications associated with this calcium channel's transcriptional regulation. Our two experimental groups underwent the same physical task differing only in the spatial learning component, highlighting the tight relationship between DNA modifications and transcriptional activity in a relevant context such as behavioral training. Our results complement previous observations and suggest that DNA modifications are a reliable signal for the transcriptional activity of and can be useful to understand how conditions such as aging and neuropathological diseases determine altered expression.
人们越来越关注细胞内钙库在神经元功能中的作用。RyR3 是一种细胞内钙通道,有助于海马体长时程增强、树突棘功能和更高阶的认知过程。有趣的是,增加神经元活动的刺激会上调 RyR3 的转录活性,并增加其近端启动子的 DNA 甲基化。然而,这些观察结果是否适用于学习和记忆等复杂的行为任务仍在评估中。相对表达分析显示,空间学习增加了海马体中 RyR3 的水平,而在没有空间关联的情况下接受可视平台训练的小鼠则表现出表达降低。有趣的是,我们还观察到这些相反的转录变化伴随着特定的 DNA 修饰。在经过空间训练的小鼠的海马体样本中观察到 DNA 甲基化增加,而在使用可视平台训练的小鼠的样本中观察到 DNA 羟甲基化增加。这两种 DNA 修饰在对照区域都没有改变,表明这些变化不是普遍的,而是与这种钙通道转录调控相关的特定修饰。我们的两个实验组进行了相同的物理任务,只是在空间学习成分上有所不同,这突出了 DNA 修饰与行为训练等相关环境中的转录活性之间的紧密关系。我们的结果补充了以前的观察结果,并表明 DNA 修饰是 RyR3 转录活性的可靠信号,可用于了解衰老和神经病理疾病等条件如何决定 RyR3 表达的改变。