Suppr超能文献

癌症研究中的临床质量:从仅肿瘤检测测序数据推断种系变异体数据完整性评估策略。

Clinical Quality in Cancer Research: Strategy to Assess Data Integrity of Germline Variants Inferred from Tumor-Only Testing Sequencing Data.

机构信息

F. Hoffmann-La Roche AG, Basel, Switzerland.

Roche Products Ltd., Welwyn Garden City, UK.

出版信息

Pharmaceut Med. 2021 Jul;35(4):225-233. doi: 10.1007/s40290-021-00399-4. Epub 2021 Aug 26.

Abstract

In the majority of cancers, pathogenic variants are only found at the level of the tumor; however, an unusual number of cancers and/or diagnoses at an early age in a single family may suggest a genetic predisposition. Predisposition plays a major role in about 5-10% of adult cancers and in certain childhood tumors. As access to genomic testing for cancer patients continues to expand, the identification of potential germline pathogenic variants (PGPVs) through tumor-DNA sequencing is also increasing. Statistical methods have been developed to infer the presence of a PGPV without the need of a matched normal sample. These methods are mainly used for exploratory research, for example in real-world clinico-genomic databases/platforms (CGDB). These databases are being developed to support many applications, such as targeted drug development, clinical trial optimization, and postmarketing studies. To ensure the integrity of data used for research, a quality management system should be established, and quality oversight activities should be conducted to assess and mitigate clinical quality risks (for patient safety and data integrity). As opposed to well-defined 'good practice' quality guidelines (GxP) areas such as good clinical practice, there are no comprehensive instructions on how to assess the clinical quality of statistically derived variables from sequencing data such as PGPVs. In this article, we aim to share our strategy and propose a possible set of tactics to assess the PGPV quality and to ensure data integrity in exploratory research.

摘要

在大多数癌症中,仅在肿瘤水平发现致病性变异;然而,在一个家族中,一种异常数量的癌症和/或早期诊断可能表明存在遗传易感性。易感性在大约 5-10%的成年癌症和某些儿童肿瘤中起着主要作用。随着对癌症患者进行基因组检测的机会不断增加,通过肿瘤 DNA 测序鉴定潜在的种系致病性变异(PGPV)的情况也在增加。已经开发了统计方法来推断 PGPV 的存在,而无需匹配的正常样本。这些方法主要用于探索性研究,例如在真实世界的临床基因组数据库/平台(CGDB)中。这些数据库正在开发中,以支持许多应用,如靶向药物开发、临床试验优化和上市后研究。为了确保用于研究的数据的完整性,应建立质量管理体系,并开展质量监督活动,以评估和减轻临床质量风险(用于患者安全和数据完整性)。与明确的“良好实践”质量指南(GxP)领域(如良好临床实践)不同,对于如何评估来自测序数据(如 PGPV)的统计衍生变量的临床质量,没有全面的说明。在本文中,我们旨在分享我们的策略,并提出一套可能的策略来评估探索性研究中的 PGPV 质量并确保数据完整性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验