USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States of America.
Department of Mathematics Computer Science, Texas Woman's University, Denton, TX, United States of America.
PLoS One. 2021 Aug 26;16(8):e0256472. doi: 10.1371/journal.pone.0256472. eCollection 2021.
The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.
保守寡聚高尔基体 (COG) 复合物在逆行运输过程中维持正确的高尔基体结构和功能。大豆有每个 COG 基因的 2 个基因家族的直系同源物,每个基因家族的一个直系同源物具有针对寄生线虫大豆胞囊线虫的防御功能。本文介绍的实验表明,在经历防御反应的根细胞(合胞体)中特异性表达大豆 COG 基因 COG7-2-b 的直系同源物。表达的防御 COG 基因 COG7-2-b 是一个替代剪接变体,表明特定的 COG 变体对防御很重要。检查从 COG 过表达和 RNAi 根中分离的 RNA 的转录组实验表明,一些 COG 基因共同调节其他 COG 复合物基因的表达。检查负责 COG 表达的信号事件,检查 MAPK 过表达根的转录组实验表明,与对照相比,它们的表达会影响 COG 基因的相对转录丰度。研究表明,COG 复合物的直系同源物存在于全球范围内与农业相关的植物中,包括 Manihot esculenta、Zea mays、Oryza sativa、Triticum aestivum、Hordeum vulgare、Sorghum bicolor、Brassica rapa、Elaes guineensis 和 Saccharum officinalis 以及对美国农业具有重要意义的其他作物,包括 Beta vulgaris、Solanum tuberosum、Solanum lycopersicum 和 Gossypium hirsutum。该分析提供了有关 COG 复合物生物学的基本信息,包括一些 COG 基因的共调节以及在防御中起作用的 MAPKs 影响其表达。此外,在大豆和可能的其他作物中,似乎发生了一些重复基因的新功能化。该分析确定了未来在植物中广泛开展研究的重要途径。