Suppr超能文献

从电子健康记录的文本挖掘中分析 4095 例唐氏综合征个体的临床表型谱。

Clinical Phenotypic Spectrum of 4095 Individuals with Down Syndrome from Text Mining of Electronic Health Records.

机构信息

Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA.

出版信息

Genes (Basel). 2021 Jul 28;12(8):1159. doi: 10.3390/genes12081159.

Abstract

Human genetic disorders, such as Down syndrome, have a wide variety of clinical phenotypic presentations, and characterizing each nuanced phenotype and subtype can be difficult. In this study, we examined the electronic health records of 4095 individuals with Down syndrome at the Children's Hospital of Philadelphia to create a method to characterize the phenotypic spectrum digitally. We extracted Human Phenotype Ontology (HPO) terms from quality-filtered patient notes using a natural language processing (NLP) approach MetaMap. We catalogued the most common HPO terms related to Down syndrome patients and compared the terms with those from a baseline population. We characterized the top 100 HPO terms by their frequencies at different ages of clinical visits and highlighted selected terms that have time-dependent distributions. We also discovered phenotypic terms that have not been significantly associated with Down syndrome, such as "Proptosis", "Downslanted palpebral fissures", and "Microtia". In summary, our study demonstrated that the clinical phenotypic spectrum of individual with Mendelian diseases can be characterized through NLP-based digital phenotyping on population-scale electronic health records (EHRs).

摘要

人类遗传疾病,如唐氏综合征,具有广泛的临床表型表现,并且对每个细微的表型和亚型进行特征描述可能具有挑战性。在这项研究中,我们检查了费城儿童医院的 4095 名唐氏综合征患者的电子健康记录,以创建一种数字化特征描述表型谱的方法。我们使用自然语言处理(NLP)方法 MetaMap 从经过质量过滤的患者笔记中提取人类表型本体(HPO)术语。我们对与唐氏综合征患者最相关的最常见 HPO 术语进行了分类,并将这些术语与基线人群进行了比较。我们根据在不同临床就诊年龄的频率对前 100 个 HPO 术语进行了特征描述,并突出显示了具有时间依赖性分布的选定术语。我们还发现了与唐氏综合征没有显著关联的表型术语,例如“眼球突出”、“下斜的睑裂”和“小耳”。总之,我们的研究表明,通过基于 NLP 的人群规模电子健康记录(EHR)的数字表型分析,可以对孟德尔疾病患者的临床表型谱进行特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c8/8393657/cd678ea87896/genes-12-01159-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验