文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

石墨烯纳米粉体纳米流体的粘度和流变特性

Viscosity and Rheological Properties of Graphene Nanopowders Nanofluids.

作者信息

Bakak Abderrahim, Lotfi Mohamed, Heyd Rodolphe, Ammar Amine, Koumina Abdelaziz

机构信息

Laboratoire Interdisciplinaire de Recherche en Bioressources, Énergie et Matériaux (LIRBEM), ENS, Cadi Ayyad University, Marrakech 40000, Morocco.

Materials, Energy & Environment Laboratory (LaMEE), FSSM, Cadi Ayyad University, Marrakech 40000, Morocco.

出版信息

Entropy (Basel). 2021 Jul 29;23(8):979. doi: 10.3390/e23080979.


DOI:10.3390/e23080979
PMID:34441119
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8391775/
Abstract

The dynamic viscosity and rheological properties of two different non-aqueous graphene nano-plates-based nanofluids are experimentally investigated in this paper, focusing on the effects of solid volume fraction and shear rate. For each nanofluid, four solid volume fractions have been considered ranging from 0.1% to 1%. The rheological characterization of the suspensions was performed at 20 ∘C, with shear rates ranging from 10-1s-1 to 103s-1, using a cone-plate rheometer. The Carreau-Yasuda model has been successfully applied to fit most of the rheological measurements. Although it is very common to observe an increase of the viscosity with the solid volume fraction, we still found here that the addition of nanoparticles produces lubrication effects in some cases. Such a result could be very helpful in the domain of heat extraction applications. The dependence of dynamic viscosity with graphene volume fraction was analyzed using the model of Vallejo et al.

摘要

本文通过实验研究了两种不同的基于非水石墨烯纳米片的纳米流体的动态粘度和流变特性,重点关注固体体积分数和剪切速率的影响。对于每种纳米流体,考虑了四个固体体积分数,范围从0.1%到1%。使用锥板流变仪在20℃下对悬浮液进行流变表征,剪切速率范围为10⁻¹s⁻¹至10³s⁻¹。Carreau-Yasuda模型已成功应用于拟合大多数流变测量结果。尽管通常会观察到粘度随固体体积分数增加,但我们在此仍发现,在某些情况下添加纳米颗粒会产生润滑效果。这一结果在热提取应用领域可能非常有帮助。使用Vallejo等人的模型分析了动态粘度与石墨烯体积分数的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/95b37b46b57b/entropy-23-00979-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/70c5a6fca49c/entropy-23-00979-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/4771121bee2c/entropy-23-00979-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/3df09b7b90f1/entropy-23-00979-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/3b63425dc40e/entropy-23-00979-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/c0e1b40481b9/entropy-23-00979-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/25cc99e88e34/entropy-23-00979-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/8c9fd4f6d79a/entropy-23-00979-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/788de749e7dd/entropy-23-00979-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/80861d067835/entropy-23-00979-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/c1f608ed697b/entropy-23-00979-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/ed5533336e8c/entropy-23-00979-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/95b37b46b57b/entropy-23-00979-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/70c5a6fca49c/entropy-23-00979-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/4771121bee2c/entropy-23-00979-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/3df09b7b90f1/entropy-23-00979-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/3b63425dc40e/entropy-23-00979-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/c0e1b40481b9/entropy-23-00979-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/25cc99e88e34/entropy-23-00979-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/8c9fd4f6d79a/entropy-23-00979-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/788de749e7dd/entropy-23-00979-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/80861d067835/entropy-23-00979-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/c1f608ed697b/entropy-23-00979-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/ed5533336e8c/entropy-23-00979-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/8391775/95b37b46b57b/entropy-23-00979-g012.jpg

相似文献

[1]
Viscosity and Rheological Properties of Graphene Nanopowders Nanofluids.

Entropy (Basel). 2021-7-29

[2]
A comparative experimental investigation of dynamic viscosity of ZrO/DW and SiC/DW nanofluids: Characterization, rheological behavior, and development of new correlation.

Heliyon. 2023-10-17

[3]
Examining rheological behavior of CeO-GO-SA/10W40 ternary hybrid nanofluid based on experiments and COMBI/ANN/RSM modeling.

Sci Rep. 2022-12-21

[4]
Thermophysical Profile of Industrial Graphene Water-Based Nanofluids.

Nanomaterials (Basel). 2024-8-28

[5]
Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method.

Materials (Basel). 2021-12-21

[6]
Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.

Environ Sci Pollut Res Int. 2021-10

[7]
The Effect of Ag-Decoration on rGO/Water Nanofluid Thermal Conductivity and Viscosity.

Nanomaterials (Basel). 2022-3-26

[8]
Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.

Nanoscale Res Lett. 2017-12

[9]
Influence of Six Carbon-Based Nanomaterials on the Rheological Properties of Nanofluids.

Nanomaterials (Basel). 2019-1-24

[10]
Two-Dimensional Tungsten Disulfide-Based Ethylene Glycol Nanofluids: Stability, Thermal Conductivity, and Rheological Properties.

Nanomaterials (Basel). 2020-7-9

引用本文的文献

[1]
Impact of the Curing Temperature on the Manufacturing Process of Multi-Nanoparticle-Reinforced Epoxy Matrix Composites.

Materials (Basel). 2024-4-22

[2]
Study of molar properties of GO after doping with transition metals for photodegradation of fluorescent dyes.

RSC Adv. 2022-10-18

[3]
Therapeutic potential of nanotechnology-based approaches in osteoarthritis.

Front Pharmacol. 2022-8-8

本文引用的文献

[1]
Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems.

RSC Adv. 2019-1-28

[2]
Nanomedicines functionalized with anti-EGFR ligands for active targeting in cancer therapy: Biological strategy, design and quality control.

Int J Pharm. 2021-8-10

[3]
A Comparison of Empirical Correlations of Viscosity and Thermal Conductivity of Water-Ethylene Glycol-AlO Nanofluids.

Nanomaterials (Basel). 2020-7-29

[4]
Influence of Six Carbon-Based Nanomaterials on the Rheological Properties of Nanofluids.

Nanomaterials (Basel). 2019-1-24

[5]
Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment.

Adv Drug Deliv Rev. 2017-5-12

[6]
Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.

Nanoscale Res Lett. 2017-12

[7]
Seed/Catalyst-Free Growth of Gallium-Based Compound Materials on Graphene on Insulator by Electrochemical Deposition at Room Temperature.

Nanoscale Res Lett. 2015-12

[8]
A route to high surface area, porosity and inclusion of large molecules in crystals.

Nature. 2004-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索