Alolaiyan Hanan, Alshehri Halimah A, Mateen Muhammad Haris, Pamucar Dragan, Gulzar Muhammad
Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia.
Department of Computer Science and Engineering, King Saud University, Riyadh 11451, Saudi Arabia.
Entropy (Basel). 2021 Jul 30;23(8):992. doi: 10.3390/e23080992.
A complex fuzzy set is a vigorous framework to characterize novel machine learning algorithms. This set is more suitable and flexible compared to fuzzy sets, intuitionistic fuzzy sets, and bipolar fuzzy sets. On the aspects of complex fuzzy sets, we initiate the abstraction of (α,β)-complex fuzzy sets and then define α,β-complex fuzzy subgroups. Furthermore, we prove that every complex fuzzy subgroup is an (α,β)-complex fuzzy subgroup and define (α,β)-complex fuzzy normal subgroups of given group. We extend this ideology to define (α,β)-complex fuzzy cosets and analyze some of their algebraic characteristics. Furthermore, we prove that (α,β)-complex fuzzy normal subgroup is constant in the conjugate classes of group. We present an alternative conceptualization of (α,β)-complex fuzzy normal subgroup in the sense of the commutator of groups. We establish the (α,β)-complex fuzzy subgroup of the classical quotient group and show that the set of all (α,β)-complex fuzzy cosets of this specific complex fuzzy normal subgroup form a group. Additionally, we expound the index of α,β-complex fuzzy subgroups and investigate the (α,β)-complex fuzzification of Lagrange's theorem analog to Lagrange' theorem of classical group theory.
复模糊集是刻画新型机器学习算法的一个有力框架。与模糊集、直觉模糊集和双极模糊集相比,该集合更合适且更灵活。在复模糊集方面,我们首先对(α,β)-复模糊集进行抽象,然后定义α,β-复模糊子群。此外,我们证明每个复模糊子群都是一个(α,β)-复模糊子群,并定义给定群的(α,β)-复模糊正规子群。我们扩展这一思想来定义(α,β)-复模糊陪集,并分析它们的一些代数特征。此外,我们证明(α,β)-复模糊正规子群在群的共轭类中是不变的。我们从群的换位子的角度给出(α,β)-复模糊正规子群的另一种概念化。我们建立经典商群的(α,β)-复模糊子群,并表明这个特定复模糊正规子群的所有(α,β)-复模糊陪集构成一个群。此外,我们阐述α,β-复模糊子群的指数,并研究类似于经典群论中拉格朗日定理的(α,β)-复模糊拉格朗日定理。