International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.
School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.
Am J Physiol Heart Circ Physiol. 2021 Oct 1;321(4):H716-H727. doi: 10.1152/ajpheart.00239.2021. Epub 2021 Aug 27.
Spinal cord injury (SCI) impairs the cardiovascular responses to postural challenge, leading to the development of orthostatic hypotension (OH). Here, we apply lower body negative pressure (LBNP) to rodents with high-level SCI to demonstrate the usefulness of LBNP as a model for experimental OH studies, and to explore the effect of simulated OH on cardiovascular and cerebrovascular function following SCI. Male Wistar rats ( = 34) were subjected to a sham or T3-SCI surgery and survived into the chronic period postinjury (i.e., 8 wk). Cardiac function was tracked via ultrasound pre- to post-SCI to demonstrate the clinical utility of our model. At study termination, we conducted left-ventricular (LV) catheterization and insonated the middle cerebral artery to investigate the hemodynamic, cardiac, and cerebrovascular response to a mild dose of LBNP that is sufficient to mimic clinically defined OH in rats with T3-SCI but not sham animals. In response to mimicked OH, there was a greater decline in stroke volume, cardiac output, maximal LV pressure, and blood pressure in SCI compared with sham ( < 0.034), whereas heart rate was increased in sham but decreased in SCI ( < 0.029). SCI animals also had an exaggerated reduction in peak, minimum and mean middle cerebral artery flow, for a given change in blood pressure, in response to LBNP ( < 0.033), implying impaired dynamic cerebral autoregulation. Using a preclinical SCI model of OH, we demonstrate that complete high thoracic SCI impairs the cardiac response to OH and disrupts dynamic cerebral autoregulation. This is the first use of LBNP to interrogate the cardiac and cerebrovascular responses to simulated OH in a preclinical study of SCI. Here, we demonstrate the utility of our simulated OH model and use it to demonstrate that SCI impairs the cardiac response to simulated OH and disrupts dynamic cerebrovascular autoregulation.
脊髓损伤 (SCI) 损害了对姿势挑战的心血管反应,导致直立性低血压 (OH) 的发展。在这里,我们应用下体负压 (LBNP) 于高水平 SCI 的啮齿动物,以证明 LBNP 作为实验性 OH 研究模型的有用性,并探讨模拟 OH 对 SCI 后心血管和脑血管功能的影响。雄性 Wistar 大鼠(=34)接受假手术或 T3-SCI 手术,并存活至损伤后的慢性期(即 8 周)。在 SCI 前后通过超声跟踪心功能,以证明我们模型的临床实用性。在研究结束时,我们进行了左心室(LV)导管插入术并探测大脑中动脉,以研究对轻度 LBNP 的血流动力学、心脏和脑血管反应,该剂量足以模拟临床上定义的 T3-SCI 大鼠而非假手术动物的 OH。与假手术相比,SCI 中在模拟 OH 时的每搏量、心输出量、最大 LV 压和血压下降更大(<0.034),而心率在假手术中增加而在 SCI 中下降(<0.029)。SCI 动物在响应 LBNP 时也表现出峰值、最小和平均大脑中动脉血流的夸张减少,对于给定的血压变化,意味着动态脑自动调节受损。使用 OH 的临床前 SCI 模型,我们证明完全高胸 SCI 损害了 OH 的心脏反应并破坏了动态脑自动调节。这是首次使用 LBNP 在 SCI 的临床前研究中探究心脏和脑血管对模拟 OH 的反应。在这里,我们证明了我们的模拟 OH 模型的实用性,并使用它证明 SCI 损害了对模拟 OH 的心脏反应并破坏了动态脑血管自动调节。