Núñez-Muñoz Leandro, Marcelino-Pérez Gabriel, Calderón-Pérez Berenice, Pérez-Saldívar Miriam, Acosta-Virgen Karla, González-Conchillos Hugo, Vargas-Hernández Brenda, Olivares-Martínez Ana, Ruiz-Medrano Roberto, Roa-Velázquez Daniela, Morales-Ríos Edgar, Ramos-Flores Jorge, Torres-Franco Gustavo, Peláez-González Diana, Fernández-Hernández Jorge, Espinosa-Cantellano Martha, Tapia-Sidas Diana, Ramírez-Pool José Abrahan, Padilla-Viveros América, Xoconostle-Cázares Beatriz
Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico.
Doctoral Program in Nanosciences and Nanotechnology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico.
Vaccines (Basel). 2021 Aug 20;9(8):928. doi: 10.3390/vaccines9080928.
The Receptor-Binding Domain (RBD) of the Spike (S) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has glycosylation sites which can limit the production of reliable antigens expressed in prokaryotic platforms, due to glycan-mediated evasion of the host immune response. However, protein regions without glycosylated residues capable of inducing neutralizing antibodies could be useful for antigen production in systems that do not carry the glycosylation machinery. To test this hypothesis, the potential antigens NG06 and NG19, located within the non-glycosylated S-RBD region, were selected and expressed in , purified by FPLC and employed to determine their immunogenic potential through detection of antibodies in serum from immunized rabbits, mice, and COVID-19 patients. IgG antibodies from sera of COVID-19-recovered patients detected the recombinant antigens NG06 and NG19 (A = 0.80 ± 0.33; 1.13 ± 0.33; and 0.11 ± 0.08 for and negatives controls, respectively). Also, the purified antigens were able to raise polyclonal antibodies in animal models evoking a strong immune response with neutralizing activity in mice model. This research highlights the usefulness of antigens based on the non-N-glycosylated region of RBD from SARS-CoV-2 for candidate vaccine development.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突(S)蛋白的受体结合域(RBD)具有糖基化位点,由于聚糖介导的宿主免疫反应逃避,这些位点可能会限制在原核平台中表达的可靠抗原的产生。然而,没有糖基化残基但能够诱导中和抗体的蛋白质区域,对于不具备糖基化机制的系统中的抗原生产可能是有用的。为了验证这一假设,选择了位于非糖基化S-RBD区域内的潜在抗原NG06和NG19,在大肠杆菌中进行表达,通过快速蛋白质液相色谱(FPLC)进行纯化,并通过检测免疫兔子、小鼠和COVID-19患者血清中的抗体来确定它们的免疫原性潜力。COVID-19康复患者血清中的IgG抗体检测到了重组抗原NG06和NG19(A分别为0.80±0.33、1.13±0.33,阴性对照为0.11±0.08)。此外,纯化后的抗原能够在动物模型中引发强烈的免疫反应并产生具有中和活性的多克隆抗体。这项研究突出了基于SARS-CoV-2 RBD非N-糖基化区域的抗原在候选疫苗开发中的有用性。