Joseph Andrea, Nyambura Chris W, Bondurant Danielle, Corry Kylie, Beebout Denise, Wood Thomas R, Pfaendtner Jim, Nance Elizabeth
Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
Pharmaceutics. 2021 Jul 23;13(8):1131. doi: 10.3390/pharmaceutics13081131.
Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury.
新生儿缺氧缺血性脑病是足月儿永久性脑损伤的主要原因,目前尚无治愈方法。过氧化氢酶作为一种抗氧化酶,因其能够清除有毒活性氧并改善组织氧状态而成为一种有前景的治疗手段。然而,在体内给药时,过氧化氢酶半衰期短、易被蛋白水解快速降解、具有免疫原性且无法穿透血脑屏障。聚合物纳米颗粒可以改善治疗药物的药代动力学性质,尽管包裹大蛋白一直具有挑战性。在本文中,我们研究了疏水离子对技术,该技术可增加过氧化氢酶的疏水性并促使其随后负载到聚乳酸-乙醇酸共聚物-聚乙二醇(PLGA-PEG)纳米颗粒中。我们发现,与十二烷基硫酸钠(SDS)或牛磺胆酸(TA)相比,过氧化氢酶与硫酸葡聚糖(DS)形成的疏水离子复合物的形成情况更佳。在模型系统中的分子动力学模拟表明,与DS复合后天然蛋白质结构得以保留,但与SDS或TA复合后则不然。利用DS-过氧化氢酶复合物,我们制备了负载过氧化氢酶的PLGA-PEG纳米颗粒,并在出生后第10天的大鼠单侧缺氧缺血性脑损伤的Vannucci模型中评估了其疗效。与生理盐水和空白纳米颗粒对照组相比,负载过氧化氢酶的纳米颗粒在类似血清的条件下至少24小时保持酶活性,分布于受损脑组织中,并产生了显著的神经保护作用。这些结果鼓励进一步研究过氧化氢酶和PLGA-PEG纳米颗粒介导的药物递送用于治疗新生儿脑损伤。