Suppr超能文献

基于对比剂曲线稀疏恢复的肝脏 DCE-MRI 配准。

Liver DCE-MRI registration based on sparse recovery of contrast agent curves.

机构信息

Guangdong Provincial Key Laboratory of Medical Image Processing, Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

School of Biomedical Engineering, Shanghai, Tech University, Shanghai, China.

出版信息

Med Phys. 2021 Nov;48(11):6916-6929. doi: 10.1002/mp.15193. Epub 2021 Sep 16.

Abstract

PURPOSE

Dynamic contrast-enhanced MRI (DCE-MRI) registration is a challenging task because of the effect of remarkable intensity changes caused by contrast agent injections. Unrealistic deformation usually occurs by using traditional intensity-based algorithms. To alleviate the effect of contrast agent on registration, we proposed a DCE-MRI registration strategy and investigated the registration performance on the clinical DCE-MRI time series of liver.

METHOD

We reconstructed the time-intensity curves of the contrast agent through sparse representation with a predefined dictionary whose columns were the time-intensity curves with high correlations with respect to a preselected contrast agent curve. After reshaping 1D-reconstructed contrast agent time-intensity curves into a 4D contrast agent time series, we aligned the original time series to the reconstructed contrast agent time series through traditional free-form deformation (FFD) registration scheme combined with a residual complexity (RC) similarity and an iterative registration strategy. This study included the DCE-MRI time series of 20 patients with liver cancer.

RESULTS

Qualitatively, the time-cut images and subtraction images of different registration methods did not obviously differ. Quantitatively, the mean (standard deviation) of temporal intensity smoothness of all the patients achieved 54.910 (18.819), 54.609 (18.859), and 53.391 (19.031) in FFD RC, RDDR, Zhou et al.'s method and the proposed method, respectively. The mean (standard deviation) of changes in the lesion volume were 0.985 (0.041), 0.983 (0.041), 0.981 (0.046), and 0.989 (0.036) in FFD RC, RDDR, Zhou et al.'s method and the proposed method.

CONCLUSION

Our proposed method would be an effective registration strategy for DCE-MRI time series, and its performance was comparable with that of three advanced registration methods.

摘要

目的

由于对比剂注射引起的显著强度变化的影响,动态对比增强磁共振成像(DCE-MRI)配准是一项具有挑战性的任务。传统的基于强度的算法通常会导致不真实的变形。为了减轻对比剂对配准的影响,我们提出了一种 DCE-MRI 配准策略,并研究了其在肝脏临床 DCE-MRI 时间序列上的配准性能。

方法

我们通过稀疏表示来重建对比剂的时间-强度曲线,该表示使用预定义的字典,其列是与预选择的对比剂曲线具有高相关性的时间-强度曲线。将 1D 重建的对比剂时间-强度曲线重塑为 4D 对比剂时间序列后,我们通过传统的自由形态变形(FFD)注册方案与残余复杂度(RC)相似性和迭代注册策略相结合,将原始时间序列与重建的对比剂时间序列对齐。这项研究包括 20 名肝癌患者的 DCE-MRI 时间序列。

结果

定性上,不同配准方法的时间切片图像和减影图像没有明显差异。定量上,所有患者的时间强度平滑度均值(标准差)分别为 FFD RC、RDDR、Zhou 等人的方法和所提出的方法中的 54.910(18.819)、54.609(18.859)和 53.391(19.031)。病变体积变化的均值(标准差)分别为 FFD RC、RDDR、Zhou 等人的方法和所提出的方法中的 0.985(0.041)、0.983(0.041)、0.981(0.046)和 0.989(0.036)。

结论

我们提出的方法将是一种有效的 DCE-MRI 时间序列配准策略,其性能可与三种先进的配准方法相媲美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验