Suppr超能文献

解析喹唑啉酮药效团在双喹唑啉酮衍生物抑制 Tankyrase-1 活性及其在结直肠癌(CRC)和非小细胞肺癌(NSCLC)治疗中的作用机制:一种计算方法。

Unravelling the Mechanistic Role of Quinazolinone Pharmacophore in the Inhibitory Activity of Bis-quinazolinone Derivative on Tankyrase-1 in the Treatment of Colorectal Cancer (CRC) and Non-small Cell Lung Cancer (NSCLC): A Computational Approach.

机构信息

Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.

出版信息

Cell Biochem Biophys. 2022 Mar;80(1):1-10. doi: 10.1007/s12013-021-01027-3. Epub 2021 Aug 28.

Abstract

In recent years, tankyrase inhibition has gained a great focus as an anti-cancer strategy due to their modulatory effect on WNT/β-catenin pathway implicated in many malignancies, including colorectal cancer (CRC) and non-small cell lung cancer (NSCLC). Based on the structural homology in the catalytic domain of PARP enzymes, bis-quinazolinone 5 (Cpd 5) was designed to be a potent selective tankyrase inhibitor. In this study, we employed molecular dynamics simulations and binding energy analysis to decipher the underlying mechanism of TNK-1 inhibition by Cpd 5 in comparison with a known selective tankyrase, IWR-1. The Cpd 5 had a relatively higher ΔG than IWR-1 from the thermodynamics analysis, revealing the better inhibitory activity of Cpd 5 compared to IWR-1. High involvement of solvation energy (ΔG) and the van der Waals energy (ΔE) potentiated the affinity of Cpd 5 at TNK-1 active site. Interestingly, the keto group and the N3 atom of the quinazolinone nucleus of Cpd 5, occupying the NAM subsite, was able to form H-bond with Gly1185, thereby favoring the better stability and higher inhibitory efficacy of Cpd 5 relative to IWR-1. Our analysis proved that the firm binding of Cpd 5 was achieved by the quinazolinone groups via the hydrophobic interactions with the side chains of key site residues at the two subsite regions: His1201, Phe1188, Ala1191, and Ile1192 at the AD subsite and Tyr1224, Tyr1213, and Ala1215 at the NAM subsite. Thus, Cpd 5 is dominantly bound through π-π stacked interactions and other hydrophobic interactions. We believe that findings from this study would provide an important rationale towards the structure-based design of improved selective tankyrase inhibitors in cancer therapy.

摘要

近年来,由于其对 WNT/β-连环蛋白途径的调节作用,该途径与多种恶性肿瘤有关,包括结直肠癌(CRC)和非小细胞肺癌(NSCLC),端锚聚合酶(Tankyrase)抑制已成为一种重要的抗癌策略。基于 PARP 酶催化结构域的结构同源性,双喹唑啉酮 5(Cpd 5)被设计为一种有效的选择性 Tankyrase 抑制剂。在这项研究中,我们采用分子动力学模拟和结合能分析,以破译 Cpd 5 与已知的选择性 Tankyrase,IWR-1 相比,对 TNK-1 的抑制作用的潜在机制。热力学分析表明,Cpd 5 的ΔG 相对较高,这表明 Cpd 5 的抑制活性优于 IWR-1。溶剂化能(ΔG)和范德华能(ΔE)的高参与度增强了 Cpd 5 在 TNK-1 活性部位的亲和力。有趣的是,Cpd 5 的喹唑啉酮核上的酮基和 N3 原子占据 NAM 亚位点,能够与 Gly1185 形成氢键,从而使 Cpd 5 具有更好的稳定性和更高的抑制效果。与 IWR-1 相比。我们的分析证明,Cpd 5 通过喹唑啉酮基团与两个亚基区域的关键部位残基的侧链通过疏水相互作用牢固结合:AD 亚基上的 His1201、Phe1188、Ala1191 和 Ile1192 以及 NAM 亚基上的 Tyr1224、Tyr1213 和 Ala1215。因此,Cpd 5 主要通过π-π堆积相互作用和其他疏水相互作用结合。我们相信,这项研究的结果将为基于结构的设计提供重要的依据,以开发用于癌症治疗的改进的选择性 Tankyrase 抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验