Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
Ocean College, Hebei Agricultural University, Qinhuangdao, China.
Gen Comp Endocrinol. 2021 Nov 1;313:113890. doi: 10.1016/j.ygcen.2021.113890. Epub 2021 Aug 26.
Animals living at high altitudes are challenged by the extreme environmental conditions of cold temperature and hypobaric hypoxia. It is not well understood how high-altitude birds enhance the capacity of metabolic thermogenesis and allocate metabolic capacity in different organs to maximize survival in extreme conditions of a cold winter. The Qinghai-Tibet Plateau (QTP) is the largest and highest plateau globally, offering a natural laboratory for investigating coping mechanisms of organisms inhabiting extreme environments. To understand the adaptive strategies in the morphology and physiology of small songbirds on the QTP, we compared plasma triiodothyronine (T), pectoralis muscle mitochondrial cytochrome c oxidase (COX) and state IV capacities, the expression of peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), adenine nucleotide translocase (ANT), uncoupling protein (UCP), and adenosine monophosphate-dependent kinase (AMPK) α1 mRNA in the pectoralis and liver of Eurasian tree sparrows (Passer montanus) from high-altitude (3,230 m), medium-altitude (1400 m), and low-altitude (80 m) regions. Our results showed that high-altitude sparrows had greater body masses, longer wings and tarsometatarsi, but comparable bill lengths relative to medium- and low-altitude individuals. High-altitude sparrows had higher plasma T levels and pectoralis muscle mitochondrial COX capacities than their lowland counterparts. They also upregulated the pectoralis muscle mRNA expression of UCP, PGC-1α, and ANT proteins relative to low-altitude sparrows. Unlike pectoralis, high-altitude sparrows significantly down-regulated hepatic AMPKα1 and ANT protein expression as compared with their lowland counterparts. Our results contribute to understanding the morphological, biochemical, and molecular adaptations in free-living birds to cope with the cold seasons in the extreme environment of the QTP.
生活在高海拔地区的动物面临着寒冷温度和低气压缺氧的极端环境条件的挑战。人们还不太了解高海拔鸟类如何增强代谢产热能力,并在不同器官中分配代谢能力,以在寒冷冬季的极端条件下最大限度地生存。青藏高原(QTP)是全球最大和最高的高原,为研究生物在极端环境中的应对机制提供了一个天然实验室。为了了解 QTP 小型鸣禽在形态和生理上的适应策略,我们比较了高原(3230 米)、中海拔(1400 米)和低海拔(80 米)地区欧亚树麻雀(Passer montanus)的血浆三碘甲状腺原氨酸(T)、胸肌线粒体细胞色素 c 氧化酶(COX)和状态 IV 能力、过氧化物酶体增殖物激活受体γ共激活因子α(PGC-1α)、腺嘌呤核苷酸转位酶(ANT)、解偶联蛋白(UCP)和腺苷一磷酸依赖性激酶(AMPK)α1mRNA 的表达。结果表明,高海拔麻雀的体质量较大,翅膀和跗跖较长,但相对于中低海拔个体,喙长相当。高海拔麻雀的血浆 T 水平和胸肌线粒体 COX 能力高于低海拔个体。它们还上调了胸肌 UCP、PGC-1α 和 ANT 蛋白的 mRNA 表达,与低海拔麻雀相比。与胸肌不同的是,与低海拔个体相比,高海拔麻雀的肝脏 AMPKα1 和 ANT 蛋白表达显著下调。我们的研究结果有助于理解自由生活鸟类在青藏高原极端环境中应对寒冷季节的形态、生化和分子适应。