Suppr超能文献

Human optokinetic nystagmus in response to moving binocularly disparate stimuli.

作者信息

Howard I P, Gonzalez E G

机构信息

Department of Psychology, York University, Toronto, Canada.

出版信息

Vision Res. 1987;27(10):1807-16. doi: 10.1016/0042-6989(87)90109-x.

Abstract

Physiological and behavioral evidence shows that the directionally preponderant subcortical control of optokinetic nystagmus (OKN) in lower mammals is supplemented in higher mammals by bidirectional cortical control. It is hypothesized that this cortical control allows higher mammals to cope with the parallactic movement of the scene produced by linear motion of the body. In particular, it is hypothesized that a coupling between OKN and stereopsis allows higher mammals to stabilize the images of objects within the plane of fixation while ignoring motion signals from objects at other distances. According to this hypothesis the gain of the slow phase of OKN should be highest for binocularly fused moving stimuli and attenuated for binocularly disparate displays. The results of Experiment 1 confirmed this prediction although the effects of accommodation were not ruled out completely. In Experiment 2 a display moving in one direction was presented across the central retina at the same time as one moving in the opposite direction was presented in the upper and lower periphery. It was found that subjects do not show OKN in the direction of the peripheral display unless it is binocularly fused and the central display is disparate. In Experiment 3 a stationary display of dots was superimposed on a moving display. It was found that OKN is not inhibited by the stationary display when it has a horizontal disparity and the moving display is fused. Experiment 4 found that horizontal OKN is disrupted by the sudden introduction of a vertical disparity in the stimulus. Since accommodative state was kept constant in the last three experiments, the data show that binocular disparities can help a person to stabilize selectively the image of one moving display while ignoring conflicting motion signals from another display.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验